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S1. Introduction

2. Body
Below is the original statement of work, which was submitted in October of 2003. We have made

excellent progress on all phases of the work, but because of the costs to accomplish the work, some of the
unchartered technical difficulties, new opportunities, and the limits of time, our work is incomplete.

I. A. We will catalog loci that are amplified or deleted in breast cancers using ROMA, and compare
these to a database of normal copy number polymorphism in the human population. B. We will
correlate the presence or absence of amplifications and deletions with the outcome and clinical
staging of the disease, and with Herceptin responsiveness to develop ROMA-based disease markers.
C. This information will also be used to generate FISH probes for cytological analysis of the disease
at its earliest stage, when only a minimal number of cells are available for pathological analysis.

II. We will analyze frozen and formalin fixed tumor specimens as part of three studies: correlates of
progression in ductal-carcinoma-in-situ; correlates of Herceptin responsiveness; and correlates of
survival in advanced node negative cancer. We will analyze on the order of 300 specimens in each
of two years, the duration of this study. The data will be publicly posted after the first year, and as it
is collected thereafter, providing a database of recurring cancer abnormalities.

III.We will complete software development so that ROMA technology can be widely accessed by
research and clinical oncologists, enabling, for example, the inclusion of ROMA data in clinical
trials. Our work will include creation of relational databases, completion of segmentation
algorithms, epicenter analysis algorithms, and gene-centric and event-centric querying systems. The
genes in the epicenters of loci that are commonly amplified or deleted in breast cancers will be
posted, so that they can serve as a starting point for the development of new cancer therapeutics.

I now describe the work accomplished and a projection of the road ahead.

I. A. We have completed data acquisition of approximately 200 breast cancer biopsies and
cell lines, and approximately 300 normal genomes. We have developed a method to determine
the loci that are commonly deleted and amplified in breast cancer but not in normal genomes,
and are preparing a paper to publish much of our findings. Many of these loci confirm what is
known, but many are new. At many loci, even very common ones, there are more than one
candidate oncogene and tumor suppressor gene, and so the continued analysis of breast cancers
will shed light on the exact genes driving cancer malignancy. Moreover, we have made the
surprising discovery that there are regions in the breast cancer genome which are sometimes
amplified but hardly ever deleted, even hemizygously. These regions may contain the best
targets for future chemotherapy. Analyses of further biopsies are required here as well to better
delineate these regions.

The analysis of the normal genomes is an integral part of our campaign, because if we did
not know which genome copy number changes were actually present in healthy genomes, we
might mistake these when they are observed in cancers. The discovery of the normal copy
number variation is found in Sebat et al., 2004.

B. We have examined the genome of diploid breast cancers, small at presentation, from
node negative women. In general this group has a favorable prognosis, but some women
nevertheless die. Our study suggests that genome instability, the presence of amplifications and
deletions, is a marker for poor survival. Markers of poor prognosis would suggest more vigorous
treatment for these women who are at higher risk, and so is an important clinical finding that will
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impact survival. We wish to continue this study to more precisely quantify the risk, and develop
a reduced set of markers that would form the basis of an affordable clinical trial.

Similar methodology can discriminate between diploid and aneuploid genomes, often
useful markers for malignant potential, with aneuploid cancers being far more lethal.

C. Fluorescence in-situ hybridization is one of the most sensitive measures of copy
number changes in single cells, and we have been working with one of the world's leaders in this
technology, Anders Zetterberg, of the Karolinska Institute in Stockholm. He has confirmed many
of our findings of copy number changes in breast cancer, and together we have established a new
methodology for designing FISH probes. We use computational methods for repeat analysis to
design PCR primers that generate relatively repeat free templates for hybridization. We are
presently developing an even more powerful method to generate FISH probes by entirely
synthetic chemical methods, using microarrays themselves to fabricate the primers for generating
the probes. The result will yield more reproducible and interpretable results in a clinical
laboratory setting.

II. Analysis of formalin fixed material and ductal carcinoma in situ (DCIS) have presented some of
our greatest technical challenges. Analysis of formalin fixed material is a critical step in making
genome measurements commonplace in a clinical setting, because it is the favored way by which
pathologist preserve specimens for histological inspection. Unfortunately, DNA is cross-linked
in formalin fixed material and so is resistant to our standard protocol, which is based on
amplification of fragments in the range of 200-1200 bp. However, we determined that fragments
in the size range of 200-400bp can be amplified reliably from tissue fixed in formalin, and so
have redesigned our protocol accordingly. To build a set of microarray probes that are able to
detect these fragments is a long process, requiring the analysis of several million possible
oligonucleotide candidates, and we are roughly half way thought the stages of developing such
microarrays. We will complete this process in the next grant period.

Analysis of the genome in DCIS is one our most important goals, and one that is most
aligned with the programmatic mission. If we can detect neoplasias early, we must be able to
accurately assess their risk. This task is complicated because very few cells are available for
analysis. We have therefore developed new protocols based on an initial amplification from
DNA based on a highly processive DNA polymerase from bacteriophage phi 29. Early results
indicate that we can obtain reasonably accurate analyses from as few as a hundred cells, which is
more than enough to analyse DCIS. We propose to continue this protocol development and test it
against DCIS in a collaboration with the pathologists at MSKCC in New York. One remarkable
possibility that our new technology offers is the prospect of analysing the genome from the few
epithelial cells circulating in blood or present in nipple lavage. If detected, abnormal genomes
might serve as a most sensitive early indicator of the presence of cancers.

III. We have completed many but not all of our original software development aims. In particular,
we have completed segmentation algorithms that allow us to confidently detect segments
undergoing copy changes in cancer and normal genomes (Sebat et al., 2004; Olshen et al., 2004;
and Durawala et al., 2004), we have completed methods for interpreting the segments and
performing epicenter analysis, that is the defining of the minimum recurrent loci which are
probably driving the evolution of the cancer cell. We have completed the first drafts of another
algorithm which we call "compression". Compression finds the "most informative" probes in our
set, in terms of the changes observed in cancers. This algorithm accomplished two goals. First, it
enables us to rank the loci in terms of a "significance" that may be equal or greater in value than
"frequency". Second, it provides a guide in the development of arrays with a smaller numbers of
probes, which are important when designing more affordable arrays for further data gathering
and clinical trials.
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In order to that our initial findings result in improvements in clinical practice, clinical
trials and statistically verifiable results are needed. To perform such clinical trials, for example
to determine markers that correlate with Herceptin response, we must make our technology
affordable. This we are accomplishing by continued software and protocol development. In
particular, we are perfecting the use of microarrays fabricated at higher probe densities, and
assays performed in micro-chambers from one fabrication unit. This requires working out new
algorithms for gridding images obtained from the highest resolution scanners that are
commercially available (1 micron scanners) and from non-rectilinear probe grids. This translates
into great cost reduction, because then up to twelve complete genome scans can be packed into
each fabrication unit as twelve separate circular hybridization chambers. We expect to
accomplish these goals within a year.

We have not completed our goal of creating the types of relational databases that enable
an outsider to query all of our data in a web based format. This has proven to be almost as
stubborn a problem as the English language itself. We are now in the process of hiring specialists
in this type of software development now that we have a body of interpretable data that should
be shared.

3. Key Research Accomplishments
We have completed copy number profiles on over 200 breast cancer genomes and over 300 genomes

from apparently normal individuals at 35kb resolution (85K probes). We have validated our results by FISH
(florescent-in-situ-hybridization). We have demonstrated that we can distinguish aneuploid and diploid tumor
genomes based on copy number profile, and in diploid cancers, we can predict five year survival outcome with
nearly 90% accuracy by copy number profiling alone. We have made strides with a variety of lab based
protocols: performing ROMA on samples with as few as a hundred cells; developed a higher resolution
microarray (400K probes rather than 85K) that should be suitable for more detailed genomic analysis and the
analysis of formalin fixed specimens; we have discovered how to reuse our microarrays, thereby reducing costs
by a factor of two or more; we have developed software and laboratory procedures for the design of inter-phase
FISH primers. We have also made progress in developing database and data processing infrastructure and tools:
design of sample and experimental relational databases to track and access data collection; segmentation
protocols based on hidden markov models for defining the boundaries of segmental copy number changes;
developed mathematical methods for epicenter mapping; and developed mathematical methods that allow
classification of disease status based on genome profiles.

4. Reportable Outcomes
We published methods to design probes for gene copy number measurements (Healy et al., 2003), and

demonstrated that ROMA can be used to measure copy number changes in breast cancers (Lucito et al., 2003).
We have published methods for segmenting gene copy number measurements (Sebat et al., 2004; Olshen et al.,
2004; and Daruwala et al., 2004). We have shown that ROMA can be used to detect segmental copy number
polymorphisms in apparently healthy genomes (Sebat et al., 2004).

5. Conclusions
The major conclusion of our research so far is that the number, extent and position of the copy number

abnormalities in breast cancer genomes can be correlated with disease status and outcome. As a practical
matter, this means that in my opinion it is likely that in the near future genomic profiling will be a clinical
diagnostic tool used to guide the physician in choosing the optimum treatment of the cancer patient, tailoring
that treatment to the type of genomic abnormalities seen in her tumor. Moreover, we are discovering many new
oncogenes and tumor suppressor loci that may reveal new drug targets for cancer therapies. The analysis of
more cancer genomes by ROMA, and at higher resolution, will improve both our ability to make clinical
correlations and define culprit gene mutations.
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APPENDIX 1

Methods - - - -

Annotating Large Genomes With Exact
Word Matches
John Healy,", 3 Elizabeth E. Thomas,' Jacob T. Schwartz, 2 and Michael Wiglerl
'Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2 Courant Institute of Mathematical Sciences, New
York University, New York, New York 10003, USA

We have developed a tool for rapidly determining the number of exact matches of any word within large, internally
repetitive genomes or sets of genomes. Thus we can readily annotate any sequence, including the entire human
genome, with the counts of its constituent words. We create a Burrows-Wheeler transform of the genome, which
together with auxiliary data structures facilitating counting, can reside in about one gigabyte of RAM. Our original
interest was motivated by oligonucleotide probe design, and we describe a general protocol for defining unique
hybridization probes. But our method also has applications for the analysis of genome structure and assembly. We
demonstrate the identification of chromosome-specific repeats, and outline a general procedure for finding
undiscovered repeats. We also illustrate the changing contents of the human genome assemblies by comparing the
annotations built from different genome freezes.

Any genome can be conceptualized as a string of letters. Every METHODS
word composed of those letters has a certain number of exact
matches within the genome, its word count. Knowledge of word Fundamentals
count is useful for probe design, discovery of repeat elements, To determine word counts rapidly, we sought to minimize the
genome annotation, and mathematical modeling of genome number of computations per word and to eliminate time-
evolution. The tools available for sequence homology analysis, consuming disk access operations. We achieve this by creating a
such as BLAST and FASTA (Pearson and Lipman 1988; Altschul et data structure that we can efficiently query and that can also
al. 1990) were not designed for this purpose, and are unneces- reside entirely in random access memory (RAM). Our solution
sarily cumbersome. We therefore sought a new tool for finding depends upon the Burrows-Wheeler transform, a method used
the word counts for words of arbitrary length in any given ge- to create a reversible permutation of a string of text that tends to
nome. be more compressible than the original text (Burrows and

Our interest in this problem has its origins in microarray Wheeler 1994). It is also strongly related to the suffix array data
hybridization analysis. We have developed methods using oligo- structure (Manber and Myers 1993) in ways that will be made
nucleotide probes for detecting gene copy number changes in apparent.
mutant and normal genomes (Lucito et al. 2003). We require our First, given a genome G of length K, we create a new string
probes to be highly unique in the genome. Our approach, like G$ of length K+1 by appending a "$" to the end of that genome.
that others have taken, is to count the exact matches of probe (We assume a single strand, reading left to right.) We then gen-
substrings, or words, to the rest of the genome (Li and Stormo erate all K+1 "suffixes" of G$, where the suffixes are the sub-
2001). When such words have lengths below 16, this task can be strings that start at every position and proceed to the end. We
accomplished using a simple tabulation of words and their next associate with each suffix the letter preceding it. In the case
counts. When the word length exceeds 15, such directly addres- of the suffix that starts at the first position, we associate the new
sable structures become impractical. More robust data structures, $ character and assume that "$" has the lowest lexicographical
such as the suffix array and suffix tree, could easily provide us value in the genome alphabet. The string of antecedent letters, in
with optimal or nearly optimal theoretical time bounds for word the lexicographical order of their suffixes, is the Burrows-
count determinations. However, in practice, these too proved to Wheeler transform of the G$ string, which we refer to as the
be impractical solutions for the case of the human genome for "B-W string" or the "BWT".
reasons that we will detail. We solved this problem by applying For example, if the genome were simply "CAT", our G$
and building upon a Burrows-Wheeler transform of the entire string would be "CATS". Then the suffixes of the genome in
human genome sequence. sorted order would be: "$', "AT$", "CATS", and "T$". The Bur-

The tool we created is capable of rapidly annotating any rows-Wheeler transform of this particular G$ would be the letters
sequence, even the entire genome, with the counts of its con- that "precede" each of those suffixes taken in the same order,
stituent words. We quickly realized that this method has other specifically "TC$A". In practice, the sort operation is performed
applications beyond probe design. In this article we describe our on the integer offsets, or pointers, into the original string based
algorithm, provide some implementation details, and then dis- on the suffix that starts at that position. To continue the ex-
cuss the relationships between our implementation and pre- ample, the list of pointers taken in the order of the sorted suffixes
existing tools and data structures. Lastly, we illustrate some ap- would be [3,1,0,2]. This list of pointers is in fact the suffix array
plications to the analysis of genome structure and assembly. for the string "CATS".

We could use the suffix array to compute word counts using
a binary search (Manber and Myers 1993). However, the suffix

3Correspondling author. array for the human genome, at approximately 12 gigabytes (3
E-MAIL healy@cshl.edu; FAX (516) 367-8381. billion, 4-byte integers), is too large to fit in RAM for any of our
Article and publication are at http://www.genome.org/cgi/doi/10.1101/ machines. We would also need access to the entire genome in
gr.1 350803. Article published online before print in September 2003. order to perform such a binary search, adding another 3 gi-
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Annotating Large Genomes With Exact Word Matches

gabytes uncompressed. On the other hand, the B-W string is A B-W
alone sufficient to determine word counts. Recall that it is no String Genome Dictionary
larger than the original genome and, like any other string of
characters, it can be compressed using any of a variety of text
compression techniques. Furthermore, in our implementation,
all but a negligibly small portion of the compressed form can bxw

remain so throughout execution. Together with auxiliary data
structures that enable the B-W string to be rapidly queried, the
entire structure for the human genome can be compressed into a w - Fw
little over 1 gigabyte of RAM. kxw W

w
X WW

The Basic Algorithm
Heuristically, the B-W string can be viewed as a navigational tool
for a "virtual" Genome Dictionary, an alphabetical listing of all X 14 Fx
the suffixes of the human genome. Suppose we wish to know X bxw

whether a substring occurs in the genome, and if so, in how XW ,- FXW ]
many copies. Let us first consider the case where the substring is XW .kxw

a single character, X. We can view all the occurrences of X in the X
Genome Dictionary as a block where Fx and Lx are the indices of
its first and last occurrence, respectively. The size of this block,
kx = Lx - Fx + 1, is the number of occurrences of X, and is
readily determined by counting the number of occurrences of X
from the beginning to the end of the B-W string. B

In order to consider the case for longer words, we first need Find-Word-Count (Z, alphabounds, BW String)
to determine Fx, Lx, and kx for each character X of the genome where Z is a string of length N, composed of characters
alphabet. The sizes of each block, the kx's, are easily determined
by counting the instances of X in the B-W string. Fx is one plus from the genome alphabet, and alphabounds contains the
the sum of the sizes of all antecedent blocks beginning with V, indices of the first and last occurrences in the genome
where V is any character occurring lexicographically before X. Lx dictionary for each character in the genome alphabet.
is one less than the sum of kx and Fx. We store the Fx and Lx for
each letter X in an auxiliary data structure called "alphabounds". 1. W -- Z[N]

We can now proceed inductively to find the count for a
word Z. Suppose W is a suffix of Z, W exists in the genome, and 2. Fw, Lw +- alphabounds(W)
we know the indices Fw and Lw of its block in the Genome 3. kw - Lw-Fw+l
Dictionary (Fig. 1A). To continue the induction we need to know 4. if N 1, return kw
whether XW exists as a substring, where X is the character pre-
ceding Win Z, and we need to know the indices of the XWblock, 5. for i in 1 to N-1
Fxw and Lxw, in the Genome Dictionary.

If and only if X occurs in the B-W string between Fw and Lw, 6. X -- Z[N-i]

then XW exists as a substring of the genome (Fig. 1A). Further- 7. kxw * count of X's between Fw and Lw,
more, the number of X's in the "W block" of the B-W string, kxw,
is the copy number of the substring XW in the genome. Finally, inclusive, in BW String
the indices of XW are easily computed, namely: 8. if kxw = 0, return 0

1. Fxw = Fx + bxw, and 9. bxw ( count of X's before Fw, in BW String
2. Lxw=Fxw+kxw - 1 10. Fx, Lx - alphabounds (X)

where bxw is the number of words beginning with X in the Ge- 11. Fxw 4- Fx + bxw
nome Dictionary that occur before XW. Recall that Fx has been
determined for each character X of the alphabet. bxw can be 12. Lxw -- Fxw + kxw-1
determined by counting the number of X's that occur before the 13. Fw - Fxw
W block of the B-W string (Fig. 1A).

We reiterate this procedure, lengthening the suffix one char- 14. Lw L
acter at a time, stopping if the suffix does not exist in the Ge- 15. return kxw
nome Dictionary. If the suffix W encompasses the entire word Z,

k~isth nmbr f ccrrncs f i th eoi tig n Figure 1 Our algorithm for rapidly determining the exact word counts
kw is the number of occurrences of Z in the genomic string. An in a large string for any length word. (A) Graphically defines the variables
outline of this procedure in pseudocode is displayed in Figure lB. and data structures used in the algorithm. (B) A pseudocode representa-

The basic algorithm transforms a pattern matching problem tion of the algorithm itself.
into a counting problem. Counting thus becomes the rate-
limiting step, and therefore we facilitate it in ways described be-
low. array for the genome. Although the suffix array is not needed to

determine word frequency, and is much too large to be held in
RAM, it should be retained on disk, because it can also be used to

Preprocessing and Database Construction find the coordinates of matches.
To count exact matches of words our method requires only the Building a suffix array can be reduced to a "sort in-place"
B-W string, but to build the string we still need to create a suffix operation. For a string of the size of the genome, we imple-
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Healy et al.

mented a parallel radix sort using a 16-node cluster. The genome the number of A's in step 9 of Figure lB. Using the K-interval
was divided into 100 equal-size substrings, each overlapping by counts structure described above, we can "jump" to within at
seven nucleotides. The offsets into the genome (i.e., the "ge- most 50 bytes of our current F, in a single look-up. Let us also
nome" coordinate) within each substring were then assigned to assume that this Fw is pointing to the third "T" in a compressed
one of 57 "prefix" bins according to the 7-mer at each offset. (The "ATT" which is in turn at the 49th byte of the interval. For each
genome alphabet was A, C, G, T, and N.) The offsets within each of the 48 preceding bytes, we simply use the byte as the row
prefix bin were then sorted based on the sequence following the number in our dictionary-counts array and the letter of interest,
7-mer prefix, creating the suffix array. "A", as our column "number". At those coordinates we will find

For the human genome, we made a special case for N's. The the number of times that the letter "A" appears in that com-
human sequence contains about 6*108 N's, mainly in large pressed byte. Therefore we must perform 48 look-ups in this
blocks ranging from 200 kb to 30 Mb in length. The presence of small directly addressable table. Finally, we must decompress the
these long blocks increased sort time by a factor of 10, so we 49th byte with another simple table look-up, and examine the
decided not to sort coordinates with 7-mer prefixes containing first two letters "AT". The dictionary-counts may seem like a
N's. As long as the constituencies of blocks bounded by prefixes minor component. However, when it is combined with the K-
containing N's are correct, their internal order is irrelevant for interval counts structure, the act of counting any number of
determining counts of N-free words. Thus, all queries with se- characters requires only K/6 +1 table look-ups, plus two character
quences containing no N's are still valid. We refer to this variant comparisons in the worst case. In actuality this structure requires
as the "N-incomplete" Burrows-Wheeler transform, approximately 65 kilobytes of memory. It is also the data struc-

The first character preceding each offset, taken in the order ture used for the majority of all computations in any single it-
of the sorted offsets, constitutes the B-W string. The B-W string is eration of our algorithm.
still three gigabytes, too large for our workstations. To compress We refer to the joint data structures and search protocols as
the string further, we used a simple dictionary-based compres- the "mer search engine" or simply the "mer-engine".
sion scheme, where one of 125 distinct single byte codes repre-
sents one of each of the 53 possible three-letter substrings. We
chose this compression scheme, even though greater compres- Validation for the Human Genome
sion can be achieved, because it has a constant compression ra- The most rigorous way to validate all the data structures and
tio, 3:1, and allows us to count characters, for the most part, protocols we have just described is to perform a reverse trans-
without decompressing. form. Starting with the position in the B-W string corresponding

In the pseudocode for our counting algorithm, all steps are to the last character of a genome, and using the protocols and
rapid "look-ups" or simple computations except for steps 7 and 9 data structures just described, one should be able to reconstruct
(Fig. 1B). These steps involve counting the B-W string over po- that genome sequence. However, the N-incomplete transform of
tentially large blocks of characters. In order to speed counting, we the human genome is not a proper Burrows-Wheeler transform
created an auxiliary data structure, the "K-interval counts", string, and hence the full genomic string cannot be reconstructed
where K is an integer multiple of the compression ratio, by pre- from it.
counting on the B-W string. We determine the cumulative Therefore to validate our human mer search engine, we
counts for each character and record them for every Kth position, picked at random a million words of varying lengths, from three
To carry out counting steps, therefore, we need only count the to 1000 characters. We determined the word count and coordi-
particular character in the string from the relevant position to nates of each by scanning the genome text. We compared the
the nearest position that is a multiple of K. The number of char- word counts with those returned by the "mer search engine", and
acters that needs to be counted in any step is thus no more than in each instance there was complete concordance. We also re-
K/2. In our implementation we set K equal to 300 characters, or, ferred to the suffix array to obtain coordinates, and they agreed
equivalently, 100 compressed bytes. perfectly as well.

We have also experimented with the notion of subintervals
of size K^ within each interval K. At every KAth position within
each K-interval, we record how many instances of each character Performance for Genomes
we have seen since the beginning of the encompassing interval. The time complexity of a query for a particular word is linearly
If we limit the size of K to be <28, for example, then the counts for proportionate to the length of the word and to the size of K for
each letter at every K-interval can be recorded using a single byte. the K-interval counts. We have tested our implementation on a
This allows us to increase the "density" of the counting index by Dell PowerEdge 1650 with dual 1GHz Pentium III processors and
a factor of K/K^ while increasing the space requirements for the 4GB of physical memory running Linux. Importing a human
K-interval counts by a factor of only [(K/K^)/4]. We have imple- chromosome from disk, annotating with counts of all overlap-
mented a variant of our data structure that utilizes this hierar- ping words of length 24 (for both sense and antisense), and writ-
chical indexing scheme. Depending on the choices of K and K", ing the results to disk takes an average of 1 min per megabase.
we have seen a three- to fivefold increase in query execution This hardware configuration is now over 2 yrs old, and we expect
speed while maintaining a memory requirement of less than two significantly faster execution times on machines purchased to-
gigabytes for the human genome. Full details of this variant are day. Furthermore, we expect that our "dictionary-counts" data
provided at our Web site (http://mer-engine.cshl.edu). structure, requiring a mere 65 kilobytes, will take advantage of

To further speed the counting process we introduce a final the so-called Level 1 cache of present day CPU architectures.
data structure, the "dictionary-counts". Recall our simple 3:1 These statistics do not take into account the addition of the sub-
compression scheme, where bytes 0 through 124 decompress to intervals of size k. We have experienced reductions in time re-
"AAA" through "TIT" respectively. The dictionary-counts struc- quirements of up to fivefold through this simple modification.
ture is a small two-dimensional array that can be thought of as a The disadvantage of this variant is the additional space require-
matrix with 125 rows and five columns. Each row corresponds to ment of roughly 750 MB.
one of the compression dictionary entries, and each column cor- The time required for the preprocessing stage is dominated
responds to each letter of the genome alphabet, A through T. Let by the construction of the suffix array. This operation requires a
us assume, for instance, that we are in the process of determining sort of all of the cyclical permutations of the genome. Therefore
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the time complexity of the preprocessing stage in its entirety and L_, which is carried through each iteration. In this way, the
reduces to O(n Ig n) where n is the size of the genome. For this algorithm is an alternative to performing a binary search using
process we make use of every node in our cluster, with a total the entire suffix array along with the entire genome. It is this
execution time of approximately 6 h for a single assembly of the freedom from the need to refer to coordinates of suffixes during
human genome. search that allows us to achieve our tremendous space reduction.

Although there are a variety of ways for enhancing perfor- If there is further interest in retrieving the coordinates of every
mance, the operating times both for preprocessing and annota- exact match, then the suffix array can be accessed as it normally
tion are reasonable with our current implementation. would be; either from disk or active memory depending on avail-

able resources. It is worth noting, however, that there is a simple
extension to our query algorithm that enables the retrieval of

Relation to Existing Tools coordinates for all matches using only a small subset of the entire
In the context of genome research, we are inclined to view our suffix array. Because our primary interest lies in the word count
algorithm as a companion to methods or tools built around ap- determinations alone, we refer the interested reader to our Web
proximate homology searching such as BLAST and BLAT. In gen- site for a full description of this extension (http://mer-
eral we found that in pursuits such as repeat discovery and in engine.cshl.edu). In all comparisons made in this section, we
particular probe design, our method reduces greater than 98% assume this exclusive interest in word count queries within ge-
of the work to a simple and rapid "scan" operation; namely nomes.
that of word-count annotation. The final analysis is then per- A binary search through a suffix array can determine the
formed using a low-stringency approximate homology search count c of a word of length p within a genome of length n in O(p
on a vastly reduced set of "candidate" entities. In our probe de- ig n) time while requiring O(n Ig n) + O(n) bits of storage (Manber
sign protocol described below, greater than 99% of our candi- and Myers 1993). In practice, the suffix array for the human
dates already satisfied our full requirements prior to this final genome of length n > 231 requires a total of 5n bytes of storage;
analysis. In this same sense, and rather appropriately, both of the 4n bytes are required for the suffix array itself plus n bytes for the
approximate homology-based tools mentioned here use exact original string, all of which must be referenced throughout a
matches as their first-pass criteria before performing a more rig- search. If the hardware in use does not have sufficient RAM, then
orous sequence alignment. It is feasible that our data structure the search procedure is dominated by disk I/O operations. Disk
could act as an alternative exact-matching "core" for variants of retrievals are slower than active memory retrievals by many or-
these tools. ders of magnitude. Our algorithm can perform a similar word

We find that approximate homology tools alone are insuf- count query in O(pK) time requiring O[(n/K) Ig n] + 0(n) bits of
ficient and impractical in such pursuits when performed at the storage. In practice, our data structures for the human genome
whole-genome or multiple-genome scales. BLAST in particular, require (n/3 + {20 [n/(K/3)]}) bytes of storage where K is the size of
we find, tends to greatly multiply the amount of data that must the intervals in our K-interval counts structure. Herein lies the
be processed. For instance, when attempting to design unique versatility of the mer-engine: K can be increased or decreased
probes within a large subset of the repeat-rich human genome, depending upon the requirements and available resources. If
many of the candidate regions will have homology among them- RAM is scarce then K can be increased by Q, resulting in a linear
selves as well as within the entire genome. The resulting output decrease in space requirements and similar increase in execution
contains the cross-products of these homologies. Furthermore, times, both proportional to Q.
the best local alignments are reported, not all alignments. The Another data structure that is commonly used for exact pat-
output is therefore inadequate as an estimate of possible cross- tern matching is the suffix tree. We refer the reader to Gusfield
hybridization in microarray experiments. BLAT, on the other (1997) for a detailed description of suffix trees and the many
hand, sacrifices completeness for speed; it cannot find matches possible variations on their construction and use in problems of
for sequences that have a number of occurrences above a prede- exact and approximate pattern matching. A suffix tree requires
termined cutoff. Neither of these tools can readily yield a statistic 0(n Ig n) + O(n) bits of storage and 0(p) time to perform a word
that can be used as a measure of predicted cross-hybridization, count for any word of length p which occurs c times within
such as an aggregate of counts for all constituent 15-mers. a genome of length n. Unfortunately these expressions, particu-

REPuter (Kurtz and Schleiermacher 1999) is an existing pro- larly the space requirement, do not translate directly to expected
gram which can be used for repeat analysis and discovery as well performance in modern computer architectures. Recall that
as finding areas of uniqueness. It relies on exact pattern matching the program REPuter uses a suffix tree as its underlying data
algorithms used for the traversal of its underlying data structure, structure (Kurtz and Schleiermacher 1999). The authors of that
which is a suffix tree. This program is a complete software solu- program present a method for reducing the space requirements
tion for genome research in that it enables one to perform ex- of a suffix tree (Kurtz 1999), which is used by the REPuter pro-
haustive repeat analysis, detection of unique substrings, and ap- gram (Kurtz et al. 2001). However, REPuter is said to still require
proximate alignments with statistics, all within a graphical user 12.5n bytes of storage for a suffix tree of a genome of length n
environment (Kurtz et al. 2001). Its usefulness in the context of (Kurtz and Schleiermacher 1999). This requirement is several
the entire human genome and beyond, however, is limited due times larger than the complete memory requirements of a suffix
to tremendous memory requirements necessitated by the reli- array. It is likely to be prohibitively large for all but the most
ance on a suffix tree. We provide further detail of this issue in the expensive hardware platforms when applied to the entire human
following section. genome.

An "opportunistic data structure" based on the Burrows-
Wheeler transform has been described (Ferragina and Manzini

Relation to Existing Data Structures 2000) and is referred to as the "FM-Index". The core search algo-
Our data structure could be described as a compressed index into rithm for the FM-Index is nearly identical to the one described in
a suffix array. The query process is essentially an attempt at a our pseudocode and is used to perform word count queries.
partial reverse Burrows-Wheeler transform of the query word Through a very clever compression and indexing scheme, the
within the context of the genome. A necessary component of this FM-Index achieves space requirement bounds of 0[(n / Ig n) Ig Ig
query process is a set of pointers into the suffix array, namely F. n] bits of storage while being capable of performing word count
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queries in 0(p) time for any word of length p within a genome of Availability
length n. This is true given the authors' assumption that their Our code for executing the Burrows-Wheeler transform is highly
variable for the "bucket size" is assigned the value of Ig n. We'll platform-dependent. That is to say, it was optimized for our par-
refer to this parameter hereafter as b. This variable plays a role ticular cluster configuration and will likely require revision for
similar to that of our variable K in that it subdivides the trans- general use. However, this code will be made available upon re-
form string for better index performance. Note that for K > (lg quest, and all the information required for building the BWT is2n / Ig Ig n) our implementation requires less space. If one in- provided in the text above. To accommodate readers who wish to
creases the value for b beyond lg n, particularly in the case where perform mer analyses without having to perform the Burrows-
n >- 232, they run the risk of dramatically increasing the space Wheeler transform, several preprocessed mer-engines are avail-
requirements for the FM-Index. More specifically, the structure able. We have placed the BWT of the genomic strings for S.
referred to by the authors as "S" has space requirements bounded pombe, C. elegans, and Fugu rubripes, as well as the N-incomplete
by the term b2'^, where b^ is the maximum size of any one of the BWT of the June 2002 assembly of the genomic string for human
(n / b) compressed buckets and has an upper bound of c Ig n chromosome 1 and the entire genome, and their auxiliary data
where c < 1. This means that the actual space requirements are structures, on our public Web site (http://mer-engine.cshl.edu)
dependent upon local properties of the transform string. Our for downloading. Additionally, we have supplied C++ code that
space requirements are dependent only upon K and n (the alpha- enables mer frequency queries from any of these strings residing
bet size for genomes is negligibly small; however, it is a factor in either on disk or in RAM, and have provided the Perl code for
practical space requirements for both the mer-engine and the visualizing the resulting C++ output (Fig. 2).
FM-Index). If one decides to reduce b to avoid this risk, then our
space requirement advantage increases.

*The O(p) time complexity for the FM-Index derives from the RESULTS AND DISCUSSION
fact that within any iteration of the search procedure, where one
iteration is performed for each of the p characters of the query Annotating Sequences With Word Counts
word, counting is accomplished via look-ups within at least Using the above tools, any region of the genome can be readily
seven directly addressable data structures. Each of these look-ups annotated with its constituent mer frequencies. We have de-
requires constant theoretical time, so their combined time re- picted annotations of a 5-kb region of chromosome 19 as a his-
quirement reduces to 0(1). Recall the mer-engine variant in togram in Figure 2, using four mer lengths, 15, 18, 21, and 24
which subintervals of size K^, where K^ < K and K < 28 are intro- bases. We call such annotations "terrains". For each coordinate
duced. Assume, for example, we choose values of K = 240 and and each word length, we determined the count of the succeed-
KA = 15. Then this mer-engine variant would require four table ing word of the given length, in both the sense and antisense
look-ups plus two character comparisons for each iteration of the directions. We then plotted these counts on the y-axis, with each
search algorithm in the worst case. We believe this practical pixel on the x-axis corresponding to a coordinate. The heights of
worst-case very nearly approximates a theoretical time complex- counts exceeding 100 are truncated, and each word length is
ity of 0(p) and has space requirements of roughly 60% of the color-coded (see Fig. 2 legend).
original genome size n, including the compressed transform This region was picked somewhat arbitrarily, but it illus-
string, regardless of n. Furthermore, the last four steps of each trates some major themes. We have taken repeat and exon an-
iteration are isolated to accessing a structure that requires only 65 notations of this region from the human genome browser at
kilobytes of memory, again, regardless of n. UCSC (Karolchik et al. 2003) and aligned them to our terrain.

We could not locate any performance data for the imple- There is significant discordance between annotated repeats and
mentation of the FM-Index referenced above. However, word high terrain. We note that several regions annotated as repeats by
count query performance for the Escherichia coli genome FM- the UCSC browser in fact have very low word counts, even with
Index has been analyzed for an implementation variant (Ferra- 15-mers. This is not unexpected, as our method is based on exact
gina and Manzini 2001). The mer-engine for the human genome matches, and some repeats are very ancient and highly diverged.
performs word count queries for words between eight and 15 The relatively unique regions within repeats may nevertheless be
nucleotides in length -150 times faster than the E. coli imple- useful for probe design, and the exact count method readily finds
mentation described therein. This does not take into account the such regions.
speed-up that we observe with the introduction of subintervals to To us, one of the most striking features of the terrain is the
our K-interval counts structure. We believe this discrepancy may presence of narrow spikes in 15-mer counts. This is a virtually
be accounted for by any combination of the following: difference universal property of all regions of the human sequence we have
in CPU clock speed, the fact that not all "buckets" remain in examined, including coding exons. To develop a better under-
active memory for the duration of the test, and the requirement, standing of this phenomenon, we decided to examine what the
in this particular variant, of complete decompression of buckets word count annotation of this region would look like if the ge-
prior to the final counting stage. The authors Ferragina and Man- nome were instead a randomly generated sequence, but with the
zini (2001) do not mention any specific application of the FM- same size and dinucleotide frequency distribution as the human
Index to genome research. genome. The terrain is still rough, but there are very few spikes.

Alternative algorithms and data structures based on the Bur- We hypothesize that these spikes result from the accidental co-
rows-Wheeler transform have been defined (Miller 1996; Sada- incidence of 15-mers in ordinary sequence with 15-mers present
kane 1999). One algorithm relies heavily upon an additional in high-copy-number repeats. Such high-copy-number se-
"transformation matrix" which maps a character's position in quences are not as frequently found in a random genome.
the sorted list of all characters to its new position in the trans-
form string (Miller 1996). The challenge with this strategy is find- Computations on Subsets of the Genome
ing a succinct way to store this transformation matrix, which We also encounter regions of high terrain that are not annotated
starts out at exactly the same size as the suffix array for the same as repeats by RepeatMasker (http://ftp.genome.washington.edu/
string. The other algorithm is simply a compressed form of a RM/RepeatMasker.html). RepBase Uurka 2001), the database of
suffix array, which is entirely decompressed before performing a repeats used by RepeatMasker, does not include region-specific or
search (Sadakane 1999). chromosome-specific repeats. With our method, such repeats are
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Figure 3 A chromosome 1-specific region. (A) This region was selected in the following way: 18-mers were identified whose chromosome I counts
were -Ž90% of their whole genome counts. These 18-mers were strung together to create "chromosome-specific repeats" as long as the space between
them was less than 100 bp. At the top of the figure are the coordinates of this region in the June 2002 assembly. Along the x-axis is the relative position
of a given 18-mer within these coordinates. Along the y-axis is the absolute word count, with whole-genome counts drawn in gray and chromosome
1 counts in blue. Word counts are truncated at 100. Underneath the terrain, repeats detected by RepeatMasker are annotated in orange. Highlighted
in purple are RefSeq exons that overlap this region from RefSeq gene NM01 5383. (B) The chromosome-wide distribution of this family of chromosome-
specific repeats, as viewed in the UCSC Genome Browser. The entire length of chromosome 1 is shown, with the purple "family" track indicating
recurrences of this repeat. Below the family track are tracks that indicate both the positions of RefSeq genes and RepeatMasker annotations along
chromosome 1.

easy to find because exact.match counting can form the basis for example, chromosome-specific repeats, and it excludes "repeti-
a set algebra of the genome. In particular, we can make transform tive" regions that are quite unique in actuality.
strings from subsets of the genome and examine the partition of Although the rules for hybridization between imperfectly
words between these sets. Here we illustrate the use of this con- matched sequences are not well understood, it is clearly sensible
cept to find chromosome-specific repeats. to avoid probes that have exact "small" matches to multiple re-

We made a transform string from chromosome 1 and anno- gions of the genome. Using a directly addressable data structure,
tated it with the word counts from itself and from the entire such as a hash table, it would be a simple matter to store and
genome. We then looked for contiguous regions of chromosome retrieve counts for words as large as 14-mers. We could then
1, at least 100 bp in length, with high 18-mer counts in which the attempt to minimize aggregate exact 14-mer match counts, but
exact matches were found to derive mainly from chromosome 1. for genomic probes we think this method is inadequate. First, it
We readily found such regions, ranging in length from 100 bp to is unclear that exact matches of 14-mers have any effect on hy-
35 kb. Focusing on one such region, we observed that its mer bridization under normally stringent annealing conditions. Nor
terrain was nearly a step function, composed of shorter se- do 14-mer counts predict homology, let alone uniqueness in the
quences each with a signature modal frequency and length. We
collected all of the chromosome-specific regions containing one
of these signature regions and quickly identified a family of chro- Table 1. Size Distribution of Fragments Lost Between
mosome 1-specific sequences. Figure 3A illustrates the mer ter- Assemblies of Chromosome 10
rain for a portion of one of these family members; Figure 3B
portrays the location of its recurrences on chromosome 1. At Length of

Fragment. largest Percentage ofleast one instance of this repeat has been annotated as overlap- length Percentage fragment in interval
ping a RefSeq gene (accession no. NM_015383), with many exons interval (bp) of total interval (bp) remapped
that together encode a large predicted protein sequence having
low homology to myosin. 30-100 54 99 21

This is the first such repeat that we have investigated in any 101-200 8 199 29
depth, and we expect to find other examples that merit atten- 201-400 15.5 400 16

401-800 1 5.5 797 14
tion. The same process by which we identify chromosome- 801-1600 5.3 1507 20

specific repeats can be applied to finding repetitive DNA 1601-3200 0.5 3008 100
throughout the genome that is not recognized by RepeatMasker 3201-6400 0.6 5789 100
or other programs. One merely creates a mer-engine from the 6401-12800 0.5 12293 100
subsets of repeat sequences recognized by any pre-existing repeat 12800+ 0.1 21104 100
analysis software of choice, and compares annotations from the
whole genome mer-engine and the known repeat mer-engine to The fragments included in this distribution were chosen in the fol-
find unknown repeats. lowing way: the December 2001 assembly of Chromosome 10 was

annotated with I8-mer counts within the entire December 2001 as-
sembly as well as within the June 2002 assembly. We stored the

Probe Design coordinates of runs of at least 13 consecutive 18-mers whose counts
transitioned from 1 to 0 between assemblies. These 18-mers were

Probes are generally useful for their ability to hybridize specifi- further clustered into "dropout fragments" as long as the gaps be-
cally to complementary DNA, and therefore one of the primary tween them were not greater than 100 bp, and no more than 35% of
objectives in probe design is to minimize cross-hybridization, the fragment length was composed of gaps. A homology search using
Some investigators have used repeat masking to exclude repeat BLAST was performed to compare the dropout fragments with the
regions from consideration for probe design. As we have de- vector database; no homology to vector sequence was found. Ap-

proximately 800 dropout fragments were found, ranging from 30 bp
scribed above , this is not a perfect solution, in that it does not to 21 kb in length with a combined length of approximately 300 kb.
protect the investigator from all regions that are repetitive, for
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genome. We have compared 16-mer counts to the geometric bly. Although we describe the 1-to-O transitions in this report, we
mean of counts from their constituent 14-mers, and we do not note that they represent a small percentage of all transitions. We
see a good correlation between the two for sequences that are call 18-mers with 1-to-O transitions "orphans". We stored the
essentially unique (data not shown). coordinates of runs of at least 13 consecutive orphans. We fur-

We propose the following general protocol for probe design. ther clustered the orphans into "dropout fragments" as long as
First, choose the shortest length such that when the genome is the gaps between them were not greater than 100 base pairs, and
annotated with mer-counts of exact matches of that length, suf- no more than 35% of the fragment length was composed of gaps.
ficiently long stretches of uniqueness are found. Second, choose We performed a homology search, using BLAST, to compare
a shorter length such that exact matches of that length represent the dropout fragments with the vector database to eliminate any
stable hybrids under the appropriate stringency conditions, possible vector contaminants from our set. No homology to vec-
Then, from the regions judged to be unique at the first length, tor sequence was found. In total we found approximately 800
choose probes that minimize the aggregate mer-counts of the dropout fragments ranging from 30 bp to 21 kb in length, with a
second length. This protocol can be executed using the mer- combined length of approximately 300 kb. Table 1 provides a list
engine tools we described in the previous section. of the size distribution of the fragments.

We followed this protocol in the accompanying article to At the time of this writing, we were able to perform a re-
select 70-mer probes from small BglII fragments (Lucito et al. mapping of the fragments to the April 2003 assembly, and the
2003). We required uniqueness in the space of 21-mer counts, percentage of fragments that returned to the assembly are pro-
and then within these regions selected a 70-mer with the lowest vided. Although some returned, we found that new orphans were
sum of 15-mer counts, with a cut-off value of about 900. We also created (data not shown). The coordinates of the dropout
added a few additional requirements, to eliminate runs of single fragments in the original December 2001 assembly are available
nucleotides and severe base composition bias. Almost all probes on our Web site.
picked by these protocols, and synthesized and printed on glass, We assume that many of the dropout fragments are indeed
in fact performed well under our microarray hybridization con- human sequence: They behave that way in our hybridization
ditions. experiments; they have no homology to vector sequences; and

We used BLAST to test whether probes picked by this pro- some are conserved in mice. Although there may be technical
tocol are indeed unique in the published genome sequence. We reasons explaining the dropout of some of these fragments, such
queried 30,000 such probes against the genome using the default as difficulty in assembly or poor-quality sequence, it is also likely
parameters for MegaBLAST (filtration of simple sequence was that, due to insertion/deletion and order-of-sequence polymor-
turned off). More than 99% of our probes were unique over their phisms in humans, no fixed linear rendition of the genome is
entire length. However, for completeness, we suggest adding a feasible. It may initially strain credulity that a 21-kb region can
final step to the probe design protocol, whereby all remaining be polymorphic, but such large-sized events have been docu-
candidates are subjected to a low-stringency approximate homol- mented (Robledo et al. 2002), and the data from our accompa-
ogy search against the genome in a best-first order. nying paper strongly suggest that much larger copy number

polymorphisms are commonplace in the human gene pool (Lu-

Monitoring Genome Assemblage cito et al. 2003).

As the human genome project progresses, new assemblies, based ACKNOWLEDGMENTS
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Representational Oligonucleotide Microarray
Analysis: A High-Resolution Method to Detect
Genome Copy Number Variation
Robert Lucito,",5 John Healy,' Joan Alexander, ' Andrew Reiner,' Diane Esposito,'
Maoyen Chi,' Linda Rodgers,' Amy Brady,' Jonathan Sebat,' Jennifer Troge,2
Joseph A. West,' Seth Rostan,l Ken C.Q. Nguyen,2 Scott Powers,1'2 Kenneth Q. Ye,3

Adam Olshen,4 Ennapadam Venkatraman,4 Larry Norton,4 and Michael Wigler'
'Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2 Tularik Inc., Genomics Division, Greenlawn, New
York 11740, USA; 3Department of Applied Math and Statistics, SUNY at Stony Brook, Stony Brook, New York 11794, USA;
4Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA

We have developed a methodology we call ROMA (representational oligonucleotide microarray analysis), for the
detection of the genomic aberrations in cancer and normal humans. By arraying oligonucleotide probes designed
from the human genome sequence, and hybridizing with "representations" from cancer and normal cells, we detect
regions of the genome with altered "copy number." We achieve an average resolution of 30 kb throughout the
genome, and resolutions as high as a probe every 15 kb are practical. We illustrate the characteristics of probes on
the array and accuracy of measurements obtained using ROMA. Using this methodology, we identify variation
between cancer and normal genomes, as well as between normal human genomes. In cancer genomes, we readily
detect amplifications and large and small homozygous and hemizygous deletions. Between normal human genomes,
we frequently detect large (100 kb to 1 Mb) deletions or duplications. Many of these changes encompass known
genes. ROMA will assist in the discovery of genes and markers important in cancer, and the discovery of loci that
may be important in inherited predispositions to disease.

[The photoprint arrays were a kind gift of NimbleGen Systems Inc. and were fabricated to our design.]

Cancer is a disease caused, at least in part, by somatic and inher- tion. To apply RDA, the complexity of the two genomes must
ited mutations in genes called oncogenes and tumor suppressor first be reduced so that hybridization can go nearly to comple-
genes. It is likely that we know only a minority of the critical tion. To achieve this, we use low-complexity representations, a
genes that are commonly mutated in the major cancer types. The PCR-based method (Lisitsyn et al. 1993; Lucito et al. 1998). To
identification of these genes can lead to rational targets for che- compare genomes, they are cleaved in parallel with a restriction
motherapy. Moreover, in many cases, the knowledge of which endonuclease, ligated to oligonucleotide adapters, and amplified
genes have been mutated can predict the course of neoplasias, by PCR. The shorter restriction endonuclease fragments are pref-
including their therapeutic vulnerabilities, if any. This knowl- erentially selected after many cycles of PCR, resulting in the re-
edge is likely to become increasingly important as cancers, or duced nucleotide complexity that is the essential characteristic of
suspected cancers, are detected at earlier and earlier stages. representations.

Methods for finding cancer genes date back to the early RDA has been successfully used to detect deletions and am-
1980s, but general methods have only recently been developed. plifications in tumors, and its use has led to the discovery of
This problem is being addressed by a variety of evolving tech- several candidate tumor suppressor genes and oncogenes (Li et al.
niques, some capable of detecting the genetic losses and ampli- 1997; Hamaguchi et al. 2002; Mu et al. 2003). However, RDA does
fications that often accompany the mutation of tumor suppres- not lend itself to the high-throughput genomic profiling of hun-
sor genes or oncogenes, respectively. We describe here our suc- dreds to thousands of cancer samples that can then be analyzed
cess with ROMA (representational oligonucleotide microarray in parallel. Such vast parallel analysis is likely to be needed if the
analysis), a technique that evolved from an earlier method, RDA majority of complex genetic causes of cancer are to be identified.
(representational difference analysis; Lisitsyn et al. 1993). Like Microarray analysis is a high-throughput method that has
RDA, ROMA detects differences present in cancer genomes. been widely used to profile gene expression in cancers (DeRisi et
ROMA also has applications to the identification of genetic varia- al. 1996; Golub et al. 1999; Van't Veer et al. 2002), and three
tion in individuals caused by gene deletions or duplications, groups, including ours, have adapted microarrays to detect ge-
some of which may be related to inherited disease. nomic deletions and amplifications in tumors. Pinkel et al.

We developed RDA as one general approach to the cancer (1998) have used arrays of BAC DNAs as hybridization probes;
problem. RDA compares two genomes by subtractive hybridiza- Pollack et al. (1999) have used cDNA fragments as probes; and in

'Correspondlng author. our first implementation, we used microarrays of fragments from

E-MAIL lucito@cshl.org; FAX (516) 367-8381. representations as probes to analyze genomic representations
Article and publication are at http://www.genome.org/cgi/doi/10.1101/ (Lucito et al. 2000). All three methods use the comparative "two-
gr.1 349003. Article published online before print in September 2003. color" scheme, in which simultaneous array hybridization de-
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tects a "normal" genome at one fluorescent wavelength and a "depleted" representations. Next we describe the design and se-
pathological genome at another. lection of probes selected to hybridize well to representations.

We previously demonstrated that complexity reduction of We introduce the two array formats that we use. The third sec-
samples by representation improves signal-to-noise performance, tion illustrates how to use hybridization to depleted representa-
and diminishes the amount of sample required for analysis, rela- tions to validate the composition of an array design, and the
tive to other microarray hybridization methods (Lucito et al. fourth section illustrates the use of such hybridization data to
2000). However, useful interpretation of genomic array hybrid- characterize probes and model overall array performance. Next
ization data requires that the arrayed probes be mapped, and this we view essentially raw data of tumor and normal genomes, us-
was a daunting task when we used fragments as probes. More- ing two very different array formats, and show that the data from
over, in our previous implementation we used random fragment both formats are highly comparable. In the next section, we dem-
libraries, and we therefore could not create arrays focused in cer- onstrate a new statistical approach to gene copy number analysis
tain regions of the genome at will. based on segmentation analysis, and apply the method to two

Adopting microarrays of oligonucleotide probes solves these cancer genomes. The clonal nature of the cancers appears evi-
problems. Representations are based on amplification of short dent, as does the highly turbulent nature of their genomic rear-
restriction endonuclease fragments, and hence are predictable rangements. The concordance between copy number analysis
from the nucleotide sequence of the genome. Therefore, with and our mathematical model is re-examined. Then we look more
the publication of the rough draft of the human genome (Lander closely at several genetic lesions detected by our arrays following
et al. 2001), we can now design oligonucleotide probes that our statistical processing. Several distinct types of lesions are il-
will hybridize to representations, and map them computa- lustrated, including large regions of amplification and very nar-
tionally. We developed algorithms for choosing from each pre- row regions of homozygous and hemizygous deletion. Different
dicted short fragment a 70-mer ("long") oligonucleotide probe types of inferences that can be made by the method are demon-
with a minimal degree of sequence overlap to the rest of the strated. In the final section, we find a surprising abundance of
genome. Through computation on the published human se- "normal" variation in copy number between two individuals,
quence, we can design almost any distribution of probes within and illustrate the need to coordinate data about such variation
the genome. with interpretation of cancer data.

There are many other advantages to oligonucleotide-based
microarrays. Based on our experience with the earlier implemen-
tation of this method using fragment arrays, the quality and Representations
reproducibility of printed oligonucleotide arrays ("print format") Representations reduce the complexity of samples in a reproduc-
are superior. Although there is a large initial capital outlay to ible way, thereby increasing signal to noise during hybridization
purchase large sets of oligonucleotides, the printed arrays are to arrayed probes. Representations also provide a means to am-
very inexpensive per unit when costs are amortized, and labori- plify the quantity of sample, and allow a very convenient way to
ous and expensive replication of an underlying collection is not validate and simulate array performance.
required. Furthermore, "long" oligonucleotide probes can be syn- In our present studies, we have limited ourselves to the use
thesized directly on an array surface (photoprinted arrays), and of representations made with BglII, an enzyme with a typical 6-bp
we demonstrate herein the equivalence of the two formats. In the recognition site. BglII is one of many restriction enzymes that
photoprint format, there is no underlying physical collection at satisfy these useful criteria: It is a robust enzyme; its cleavage site
all (Singh-Gasson et al. 1999). In either case, whether printed or is not affected by CpG methylation; it leaves a four-base over-
photoprinted, the composition of the array can be absolutely hang; and its cleavage sites have a reasonably uniform distribu-
specified and hence is completely reproducible by others. tion in the human genome. After cleavage with BglII, we ligate

We show results from two array formats. The printed arrays adapters, and use the resulting product as a template for a PCR
are a format that is readily achievable. The regions that are rep- reaction. Because PCR selects small fragments, BglII representa-
resented on the array can be changed to suit the user. A whole- tions are made up of the short BgIII fragments, generally smaller
genome array can be printed with the desired resolution. Smaller than 1.2 kb, and we estimate that there are -200,000 of them,
ROMA arrays can be designed and printed to focus on specific comprising -2.5% of the human genome, with an average spac-
regions of the genome if wished, the advantage being that less ing of 17 kb.
capital outlay would be required for a smaller set of oligonucleo- For array characterization, we use "depleted" BglII represen-
tides. Results from the second format used, photoprint array, tations. These are representations made according to the usual
were presented to demonstrate the power of high-resolution protocol, but prior to PCR (to selectively amplify small BglII frag-
copy number analysis. ments), the adaptor-ligated BglII fragments are cleaved with a

In this paper, we demonstrate our system, illustrating results second restriction endonuclease. Cleavage destroys the capacity
and analytical techniques, present high-resolution analysis of of some fragments to be exponentially amplified. For example, a
cancer genomes, and provide initial evidence for widespread BgIII representation-depleted by EcoRI would consist of all small
copy number polymorphism in humans. We discuss applications BgIII fragments of the genome that do not contain within them
of our method, compare our method to other methods for global EcoRI sites. Depleted representations are used for probe valida-
genomic analysis, and outline likely future developments. tion and modeling performance because we can remove a known

subset of fragments from the representation, and observe the
consequence upon hybridization to those probes complementary

RESULTS to the depleted fragments.
In all of the experiments described herein, we have used

Overview comparative hybridization of representations prepared in paral-
This paper describes a complex procedure, observations, and lel. Our approach works best if the DNA from two samples being
methods of analysis that are highly interactive. We therefore give compared is prepared at the same time, from the same concen-
here an overview of our results to guide the reader through a tration of template, using the same protocols, reagents and ther-
sensible reading of this portion of the manuscript. The first sec- mal-cycler. This diminishes the "noise" created by variable yield
tion reviews the technique of representations, and in particular upon PCR amplification.
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Design and Selection of Probes, and Composition of power of the array hybridization to detect various genomic le-

Probes for Microarrays Formats sions, as will be described in a following section.

We describe the design (length and composition) and selection To illustrate this process with a 10K array, we show in Figure

of probes using two very distinct formats for the synthesis of 1 results obtained with BgIII representations depleted by HindIII.

arrayed probes. In Figure 1A, we graph the ratios of hybridization intensity of

Our probes are derived from the short BgIII restriction en- each probe along the Y-axis. (See Methods for a description of

donuclease fragments that we predict to exist from analysis of the how we process raw scanned data. We perform no background

human genome sequence. We initially evaluated probes of subtraction, as that only increases noise.) Each experiment is

length 30 through 70, using methods described in the next sec- performed in color reversal, and the geometric mean of ratios

tion. The signal-to-noise ratio was maximal for probes of 70 nt in from the separate experiments is plotted. Probes that we predict

length, and we chose that length as our standard. to detect fragments in both the full and depleted representations,
We selected our probes to be as unique as possible within based on the published human sequence, are grouped on the left.

the human genome, and tried to minimize short homologies to There are -8000 probes that are predicted to be present in both

all unrelated sequences. We devised algorithms by which we depleted and nondepleted representations. Probes that we pre-

could annotate any sequence of the genome with its frequency of dict will not detect fragments in the depleted representation are

exact matches in the genome (Healy et al. 2003). These algo- grouped on the right. There are -1800 probes predicted as being

rithms were used to choose regions within the predicted BgIII depleted.
fragments that are unique for their constituent 18-mers or 21- From the experiment shown in Figure 1A, we can infer that

mers, and then within these regions, choose 70-mers with the the promise of the method is largely fulfilled: The restriction

minimal arithmetic mean of their constituent 15-mer exact profile of representational fragments is correctly predicted, the

matches. Subsets of the 70-mers were then tested for uniqueness probes are correctly arrayed, and the probes detect the predicted

in the human genome by a low homology search using BLAST. fragment with acceptable signal intensity.

We used two formats for constructing microarrays. In the To calculate the data shown in Figure 1A, each hybridization
first of these, the "print" format, we purchased nearly 10,000 was performed in color reversal, and the geometric mean of ratios

from th eaaeexperiments was plotted. In Figure iB, the
oligonucleotides made with solid-phase chemistry, and printed the separate

them with quills on a glass surface. In the second format, "pho- agreement between the ratios of the color reversal experiments is

toprint arrays," oligonucleotides were synthesized directly on a graphed, as a log-log scatter plot, showing excellent correlation

silica surface using laser-directed photochemistry by NimbleGen of the data regardless of the labeling choice.

Systems Inc. The photoprint arrays were a gift of NimbleGen
Systems Inc., and fabricated to our design. Many more probes can Modeling Array Hybridization
be synthesized per array with laser-directed photochemistry, and Variation in the ratio of intensities is evident from Figure 1A.
in these experiments our arrays contained 85,000 oligonucleo- Some probes fail to exhibit the predicted elevated ratios. There
tide probes. are several possible explanations for this. For example, the oligo-

The probe composition for the 85K set was determined by a nucleotide probe may not have been correctly or completely syn-
combination of design and selection, as described below. Unlike thesized, or the respective BgIII fragment may not be present in
oligonucleotide probes synthesized by standard phosphor- the representation as predicted. The latter can happen, for ex-
amidite solid-phase chemistry, certain oligonucleotides synthe- ample, if the public genome sequence is in error, or if there is a
sized by laser-directed photochemistry are made in poor yield. polymorphism at one of the BglII sites in the sample genome
However, unlike probes synthesized by the solid-phase chemistry resulting in a longer BglII fragment than expected.
and then printed, the cost of testing a set of probes synthesized When, as here, there is significant variation in measure-
directly on a chip is no more than the cost of the chip itself. ments, statistical methods need to be used for the most accurate
Therefore, we tested -700,000 unique 70-nt probes (see Methods) interpretation of data. It is also often useful to construct a math-
predicted to be complementary to small BglII fragments, arrayed ematical model that can simulate measurement. Moreover, a
on eight chips. These were hybridized with standard BglII and good model can help predict the limits of detection, and be of
EcoRI-depleted BglII representations, and we picked the 85,000 assistance in the design of experiments. In this section, we de-
with the most intense signal when hybridized to a single normal scribe a mathematical model that fits the data, and in a later
human DNA, "J. Doe." These 85,000 were then arrayed on a section we describe statistical methods for data analysis. The
single chip. mathematical model is useful for individual probe characteriza-

In both our 10K and 85K formats, probes are arrayed in a tion, a clearer interpretation of the data, and the sharpening of
random order, to minimize the possibility that a geometric arti- statistical tools.
fact during array hybridization will be incorrectly interpreted as There is always more than one way to model data, and vari-
a genomic lesion. ous enhancements can be added, but for our arrays we have

found that a simple equation and sampling technique creates a
Validation of Printed Arrays With model with great predictive power. This model will be described
Depleted Representations in detail in a subsequent manuscript, but it is based on an equa-
We should be able to observe a very clear and predictable pattern tion for the intensity of the i-th probe in a given channel, 1[1:
to arrays hybridized with depleted representations if and only if I i] (,y * AU] * 4i] + P).
these conditions are met: The available human genome sequence
assembly is accurate; our method of probe design and selection is In this equation, c[i] is the concentration of BglII fragment
valid; our hybridization conditions are sufficiently robust to give complementary to the i-th probe prior to representation; and A[i]
a good signal-to-noise ratio for our probe population; and we is the combined "performance character" of the probe and its
have correctly deconvoluted the probe addresses on our arrays complementary BglII fragment. The parameters of the equation
during data processing. We put all our array designs through are elements of distributions, a is a multiplicative system noise; P
such tests. Moreover, the data we collect can further be used for is an additive system noise that encompasses background hybrid-
probe calibration and to create simulations that predict the ization; and y is the multiplicative noise created during parallel
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Figure I The predictability of informatics and accuracy of the array measurements using 10K microarrays. (A) The results, where the samples
hybridized are Bgfll representation and Bgll representation depleted of fragments with a Hindlll cleavage site, The Y-axis (Mean Ratio) is the mean
measured ratio from two hybridizations of depleted representation to normal representation plotted in log scale. The X-axis (Index) is a sorted index,
such that those probes that derive from fragments that do not have an internal Hindlll restriction cleavage site sort first and those with an internal HindIll
site sort last. This allows the separation of these two subsets for visualization of the cleavage results. (B) The reproducibility of the duplicate experiments
used to generate the average ratio in A. The Y-axis (Ratio Expl) is the measured ratio from experiment 1, and the X-axis (Ratio Exp2) is the measured
ratio of experiment 2. Both axes are plotted in log scale. (C) Graph of the normalized ratio on the Y-axis as a function of intensity of the sample that
was not depleted on the X-axis. Both the ratio and intensity were plotted in log scale. (D) Data generated by simulation. The X-axis (Index) is a false
index. Probes, in groups of 600, detect increasing copy number, from left to right; 600 flanking probes detect normal copy number. The Y-axis (Mean
Ratio) is the mean ratio calculated from two hybridizations.

representation and labeling. By definition, both a and y have a That is, p is independent of the probe. Thus, the "brightest"
mean of 1, and for a diploid genome, c[i] = 1. probes also have the highest specific to nonspecific signal. This

A [i] can be viewed as the "brightness" of the i-th probe, and observation was the basis for our selection of the probes of the
is a major determinant of the signal-to-noise ratio. In principle, 85K set in the photoprint format (see above).
A[fl should depend on at least two factors: the proportionate The model makes additional predictions: First, actual ratios
amplification of the fragment complementary to the probe dur- are linearly related to measured ratios, and second, the standard
ing representation; and the purity of the probe. For example, a deviation of probe measurement is a strong function of ratio,
probe that is complementary to a poorly amplified fragment will being a minimum for ratios of unity. Using parameters derived
have a low A value. Conversely, a probe complementary to a from the experiments displayed in Figure 1, we illustrate these
well-amplified fragment should be "bright" and have a high sig- relationships in Figure 1D. We assume 15 sets of 600 probes with
nal-to-noise ratio. Similarly, a probe that is synthesized with poor various copy numbers n/4, with n = 0-14, bracketed by 600
yield will have a low intensity and a poor signal-to-noise ratio, probes of diploid copy number (4/4) on either end, measured
Other factors may influence A, such as the secondary structure of against a diploid genome (c[zl = 1), and measured in duplicate.
the probe and its base composition. Note that the mean measured ratio of a set of probes is a linear

In the actual data, the highest ratios are observed from the function of the "true" copy number, the number of gene copies
most intense probes (see Fig. 1C). According to the model, this is per cell, and the mean measured ratio, RM, of a subset of probes
explained by a fairly constant nonspecific signal for most probes. reflects their true ratio, RT, by the following equation:
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RM = (RT * SN + 1)/(SN + 1). C1-C3, shows a normal male (African pygmy) versus the same J.
Doe. In each case, the samples were hybridized twice, with color

This is one general form of a linear equation in which RM = 1 reversal, and the geometric mean ratio (on a log scale) is plotted
when RT = 1. SN is an experimental character, which we think of versus the genome order of the probes.
as "specific to nonspecific" noise. We can solve for SN from any The samples from Figure 2A were derived by flow sorting the
pair of nonunitary RM and RT values. We use this tool below to nuclei of a surgical biopsy into aneuploid and diploid fractions,
analyze two cancer genomes, below, and making representations from as few as 15,000 nuclei (-100

ng of DNA). We estimate that the aneuploid fraction has perhaps
Views of Tumor Genomes at 10K and 85K Resolution 10% contamination from diploid nuclei, whereas the diploid
Array hybridization data can be readily viewed, after deconvolu- fraction is not expected to be completely normal. Nevertheless,
tion of probes into genomic order, without any model. In par- highly interpretable data result.
ticular, genomic lesions, whether deletions or amplifications, are These data are in two formats: the 10K print format (Fig.
visually obvious. We show in the matrix of panels of Figure 2 the 2A1,B1,C1) and an 85K photoprint format (Fig. 2A2,B2,C2). Un-
array hybridization data for three genomic comparisons. Figure like the 10K format, probes of the 85K format were also selected
2, A1-A3, shows breast cancer (aneuploid) versus "normal" (dip- for performance, as described and justified in earlier sections.
loid) data from the same biopsy of a patient (CHTN159). Figure 2, This selection procedure produces a slight bias, in that no probe
B1-B3, shows a breast cancer cell line (SK-BR-3) derived from a from the 85K set will detect a small BglII fragment that is homo-
patient of unknown ethnicity versus an unrelated normal male zygously missing in J. Doe. The consequences of this bias can be
("J. Doe") of mixed European and African parentage. Figure 2, seen in comparisons of the 10K print format with the 85K pho-

Al B1 C1

00 

10

ID M

0 1

1000 00 5000 70 9000 10000 00 0000 70000 90000 10000 30000 50000 70000 90000
Gen Index Gen Index Gen Index

A2 B2 C2

100

1M 30000500070W 90000 10M 00000 S 700O 0000 10000 30000900070000 90000

Gen Index Gen Index GenoIndex
A3B3 C31

~ ~o'C? 10 ~t1'

Figurtena theggeromipofiles fotrouhY (A)3aprmar bres cancrresaplnene oN 59) witho aneaupled fuleromparedtheithpdopesidsnuleit from thetis rsaen

in the 10K and the 85K microarrays. The V-axis is the measured ratio from the 10K microarray, and the X-axis is the measured ratio from the 85K
microarray.

Genome Research 2295
www.genome.org



Lucito et al.

toprint format. In results from the 10K print format, there are Figure 3 illustrates some of the output for the analysis of the
roughly equal numbers of extreme "singlets" above and below a cancer cell line SK-BR-3 at 85K resolution. We show four chro-
copy number of 1 (most apparent in Fig. 2C1). In contrast to this, mosomes, the highly turbulent Chromosome 8, a somewhat
using the 85K format, more extreme singlets are below rather less active Chromosome 17, Chromosome 5, and the X-
than above a copy number of 1 (Fig. 2C2). chromosome. The segmentation profiles and segment means for

In Figure 2, Al, A2, Bi, B2, Cl, C2, increased copy number the 10K and 85K sets are very similar (data not shown), but
is indicated by a ratio above 1, and decreased copy number by a clearly are not identical. More features are seen with the 85K set.
ratio below 1. Even at this global view, with all probes displayed, In the next section, we inspect some of the data more closely. The
several interesting observations can be made. There are clearly full data, and that for the other two genomes, can be viewed at
profiles to the cancer genomes, large regions of amplification, our Web site (http://roma.cshl.org/).
some quite high, and large regions of deletion (Fig. 2A,B). The Once segmented, we can assign to every probe the mean
profiles of the cancer genomes are varied. In contrast, the profile ratio of the segment to which it belongs, and then view the
of the normal-normal appears to be flat, although some features assigned mean ratios in sorted order. We do this for the two
can be seen. These will be examined more closely below, cancer genomes in Figure 4, A (CHTN159) and C (SK-BR-3). It is

There are, in all three genomes, many stand-alone probes evident from the figure the segment mean ratios within each
detecting minor losses and gains, which we attribute to hetero- genome are quantized, with major and minor plateaus of similar
zygous BglII polymorphism. These are manifest in the normal- value. In fact, it is likely that we can deduce the copy number by
normal comparison (Fig. 2C2) as a "shell" of probes that ap- counting. As determined by flow analysis, the tumor is subtrip-
proach ratios of 0.5 and 2.0 throughout the genome. loid, and the cell line is tetraploid. Assuming each sample is

In contrast, in the tumor-normal comparison, wherein the roughly monoclonal, then the two major plateaus in the tumor
normal is matched, there is only one stand-alone probe detecting would be two and three copies per cell, and the major plateaus in
major gains, and the stand-alone probes detecting major losses the cell line are likely to be three and four copies per cell.
are more or less confined to extensive regions showing minor We can then use the copy number assumptions of the major
loss. This pattern is consistent with a hypothesis of allelic poly- plateaus to solve the ploidy and SN for each experiment. Our
morphism and loss of heterozygosity (LOH). For a patient with method is to use a version of equation 2 for each plateau. We
heterozygosity at a BglII fragment, with a large and a small frag- select RM, the mean measured ratio, as the average of the probes
ment, loss of the small allele will result in the virtual loss of of the segments in the plateau. We first set RT to CNIP, where CN

specific signal because the large allele will not be abundant in the is the "true" copy number. CN is the number of gene copies per
representation. This will present as an apparent major loss. On cell, assumed to be known and equal for the plateau. P is the
the other hand, a loss of the large allele, for example, by gene ploidy of the tumor genome. The result is two equations and two
conversion, would at most result in a twofold increase in ratio, unknowns, with the unknowns being P and SN. For the tumor
appearing as a minor gain. biopsy experiment (Fig. 4A), we calculate the ploidy P to be 2.60,

It is evident, looking at the results of the 10K print and the and SN to be 1.13. For the cell line experiment (Fig. 4C), we
85K photoprint formats in Figure 2, Al, A2, Bi, B2, Cl, C2, that calculate that P is 3.93, and SN is 1.21. We can then use equation
the two systems capture a similar view of the larger genomic 2 again to calculate what mean ratios would be expected for
features. A correspondence between the two formats can be seen higher and lower copy numbers. These expectations are marked
quantitatively. We call probes "brothers" if they share comple- on the respective graphs, from zero to a copy number of 12, with
mentarity to the same BglII fragment. Brothers do not necessarily horizontal lines forming a "copy number lattice." The assigned
have overlapping sequence, or may be complementary across mean-segment values for probes are displayed in genome order,
their entire length. In Figure 2, A3, B3, C3, we plot the ratios of embedded with the expected copy number lattice (Fig. 4B,D).
brothers from one format to ratios of their brothers from the The copy number lattice fits remarkably well the minor pla-
other format. There are in excess of 7000 brother probes. For all teaus of the data, especially for the higher copy numbers. How-
three experiments, in spite of the fact that the probe sequences ever, there appears to be error in the expected ratios for probes
differ between formats, the order of arraying is different, the detecting loss. The assigned mean-segment ratios of probes de-
hybridization conditions differ, and the surfaces of the array are tecting loss cluster around values somewhat below the predicted
different, there is remarkable concordance between the ratios of values. In other words, the array appears to perform better for
brother probes regardless of format. deletions than predicted based on the major plateaus and our

present model. This deviation might be explained if we reexam-

Automated Segmentation and Whole-Genome Analysis our assumption of clonality, and will be investigated further.

Because of the extent of the data, and its statistical nature, auto-
mated tools for feature recognition that are statistically based are Specific Illustrative Examples
extremely useful. One part of our group has developed a statis- There is clearly too much data to be described in a printed paper,
tical segmentation algorithm termed circular binary segmenta- and the reader is invited to visit our Web page (http://
tion (CBS) that parses the probe ratio data into segments of simi- roma.cshl.org/). In this section, we discuss a few examples taken
lar mean after taking variance into account (Olshen et al. 2002). from the array data of SK-BR-3 that illustrate several aspects of
The algorithm works by analyzing one chromosome at a time our system.
and, within that chromosome, recursively identifying the best The first example is a closer inspection of a region of a break
possible segmentation. Each proposed split is accepted or re- in the X-chromosome, seen in Figure 3D. SK-BR-3, which derives
jected based on the probability that the difference in mean could from a female, has been compared to an unrelated male. The
have arisen by chance. This probability is determined using a expectation is that probes in the X-chromosome will have el-
randomization method. The algorithm is a novel modification of evated ratios. This is the case through much of the long arm of
binary segmentation (Sen and Srivastava 1975). Because of its Chromosome X. In the midst of Xq13.3, over a region spanning
nonparametric nature, the algorithm cannot identify aberrations 27 kb, there is a sharp break in copy number, and for the remain-
with fewer than three probes. We discuss detecting smaller le- der of the chromosome, ratios near 1 are observed (Fig. SA). This
sions below. example demonstrates the boundaries that can be drawn
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Figure 3 Several chromosomes with varying copy number fluctuations from analysis of the tumor cell line SK-BR-3 as compared with the normal
reference. The Y-axis (Mean Ratio) represents the mean ratio of two hybridizations in log scale. The X-axis (Gen Index) is an index of the genomic
coordinates, as described above. (A) Copy number fluctuations identified for Chromosome 5, (B) for Chromosome 8, (C) for Chromosome 17, and (D)
for the X-chromosome.

from the array data by segmentation. In our data there are other or NCBI build 30 genomic coordinates 124073565-127828283).
examples of sharp copy number transitions that must break The peak in CHTN159 also encompasses the shoulder of the sec-
genes. ond SK-BR-3 peak (Fig. 5B). Thus, the shoulder may contain can-

There are three to four narrow amplifications in SK-BR-3, didate oncogenes that merit attention. Within that region, at the
each containing two or fewer genes, among which are transmem- narrow peak, we find TRC8, the target of a translocation impli-
brane receptors. But broad amplifications can also be informa- cated in hereditary renal carcinoma (Gemmill et al. 1998). This
tive. The second example comes from the highly turbulent Chro- example illustrates the value of coordinating data from multiple
mosome 8 (see Fig. 3B). Despite the abundance of aberrations, we genomes, and the need for automated methods for analyzing
can clearly discern distinct regions of amplification. One such multiple data sets.
region is shown in Figure 5B. The rightmost peak is approxi- We next show an example of a narrow deletion that high-
mately a 1-Mb stretch, comprised of 37 probes (probe coordinates lights the need for high-resolution arrays, and also raises addi-
45099-45138, June 2002 assembly, or NCBI build 30 genome tional questions. The lesion occurs on Chromosome 5. In Figure
coordinates 126815070-128207342). Yet it contains a single Ref- 5C, we show a combined 10K (red) and 85K (blue) view. We do
Seq gene, c-myc. not show segmentation, but show the copy number lattice. A

There is a second very broad peak in SK-BR-3, ascending to deletion is evident at both 10K and 85K resolutions (probe coor-
the left of the c-myc peak, and off the graph. This broad peak has dinates 26496-26540, June 2002 assembly, or NCBI build 30 ge-
a broad shoulder on its right (probe coordinates 44994-45051, nomic coordinates 14231414-15591226), one we judge to be
June 2002 assembly, or NCBI build 30 genome coordinates hemizygous loss, but which may represent the presence of one
123976563-125564705), with a very narrow peak in its midst. copy in a tetraploid genome. The boundaries are much more
We can overlay on this the segmentation data from the tumor clearly resolved at 85K. This region contains TRIO, a protein hav-
genome, CHTN159, which has an even broader peak encompass- ing a GEF, SH3, and serine threonine kinase domain (Lin et al.
ing c-myc (probe coordinates 44996-45131, June 2002 assembly, 2000); ANKH, a transmembrane protein (Nurnberg et al. 2001);
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FIgure 4 The mean segmentation calculated from the analysis of SK-BR-3 compared with (A, B) the normal reference and (CD) CHTN159. In all panels,
the Y-axis is the value of the mean segment for each probe in log scale. In A and C, the X-axis (Mean Segment Index) is in ascending value of the assigned
mean segment. In B and D, the X-axis (Gen Index) is the genomic index, as described above. Plotted on top of the mean segment data is a copy number
lattice extrapolated from the array data using formulas within the text (horizontal lines). The calculated copy number for each horizontal line is to the
right of the lattice.

and FBXL, a component of the ubiquitin ligase mediated protein There are an abundance of narrow hemizygous and homo-
degradation pathway (Ilyin et al. 2000). zygous lesions. These are seen both in the analysis of the cancer

It is also clear from the data that the lesion does not appear cell line and the cancer biopsy. However, as described below, we
"neat." In the middle of the deletion are four or five probes that must take caution in their interpretation. Our next examples will
report ratios near 1. We can consider several explanations for this all be in the context of normal-normal variation.
result. First, the hybridization to those probes may have failed for
a variety of reasons. For example, the probes might not have been Examining Normal Genomic Variation
completely synthesized, or their complementary BgIII fragments In this section, we demonstrate the need to coordinate cancer
might not have amplified well. However, the intensities of these genome analysis with a knowledge base of normal genomic
probes are in the middle range for all probe intensities, which variation.
diminishes the likelihood of this hypothesis. Second, the human When the tumor DNA cannot be matched against normal
assembly may be in error, and the outlier probes have been in- DNA, and an unrelated normal DNA is used as a reference, the
correctly posted at this location. Third, the deletion event may differences observed may be the result of polymorphic variation.
indeed be complex, the result of a localized genomic instability. This variation can be of two sorts, the run-of-the-mill point se-

Our last example is a region of homozygous loss (Fig. 5D). In quence variation, of the sort that creates or destroys a BgllI frag-
this example, a cluster of zinc-finger proteins on Chromosome ment, SNPs for example, or actual copy number fluctuation pre-
19 is affected (probe coordinates 77142-77198, June 2002 assem- sent in the human gene pool. The former is relatively harmless,
bly, or NCBI build 30 genomic coordinates 21893948- as it will produce scattered noise that can largely be filtered by
24955961). These genes, having zinc-finger domains, may en- statistical means.
code transcription factors, whose deletion may have a role in We illustrate the application of a very mild filtration algo-
tumorigenesis. rithm: If a ratio is the most deviant of the surrounding four, we
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Figure 5 In all panels, the Y-axis (Mean Ratio SK-BR-3) is the mean ratio of two hybridizations of SK-BR-3 compared with a normal reference in log
scale. The X-axis (Gen Index) is the genomic index, as described. (A) A region from the X-chromosome with a region of loss. Plotted over the measured
array ratio is the calculated segmentation value. (B) A region of Chromosome 8 (c-myc located to the right of the center of the graph) from results of
SK-BR-3 in comparison to normal reference. Plotted on top of the data are the segmentation values for SK-BR-3 in comparison to the normal reference
in red and the segmentation values for the primary tumor CHTN159 in green. (C) A lesion on Chromosome 5 demonstrating the resolving power of
the 85K as compared with the 1 OK array. Results are from SK-BR-3 compared with a normal reference. Spots in red are from the I OK printed microarray,
and spots in blue are from the 85K photoprint array. Horizontal lines are copy number estimates, based on modeling from mean-segment values. (D)
Comparison of SK-BR-3 to normal reference, displaying a region of homozygous deletion on Chromosome 19. The mean-segment value is plotted as
a red line, and horizontal lines are copy number estimates as described.

replace it with the closer ratio of its two neighbors. In Figure 2C2, The simplest interpretation is that J. Doe is +/+, pygmy +/-, and
we showed a normal-normal comparison. The data look flat, SK-BR-3 - /-, where + designates the presence of a small BglII
with a cloud of scattered polymorphisms. In Figure 6A (corn- fragment and designates the absence of a fragment (most likely a
bined 10K and 85K sets), we have applied filtration. The data no SNP at a BglII site). In general, pairwise comparisons of three
longer look so flat, and the cloud of scattered polymorphism is genomes allow interpretable calls of allele status. Hence, we sug-
lifted, revealing nonrandom clusters of deviant probe ratios. gest that when a malignant genome cannot be paired to a
These clusters reflect large-scale genomic differences between matched normal, or perhaps even when it can, such genomes
normal individuals, and we will say more of this presently. should be compared with a single reference normal donor, whose

Polymorphic variation of the scattered variety can also be allele status can be firmly established by extensive comparisons
filtered by serial comparison of experiments. We illustrate such a against other normals.
process in Figure 6B. In this figure, we display data from SK-BR-3 Polymorphism in copy number, however, presents a differ-
compared with normal donor J. Doe, the 85K ratios displayed in ent sort of problem. In this case, many probes within a region
blue circles, and the 10K in red. On the same graph we display will show a deviation from a ratio of unity, and the pattern will
the ratios of J. Doe compared with another normal, DNA from an appear coherent, not scattered. Statistical means will not sup-
African pygmy, in green triangles. This is a fairly typical field of press this signal. But do such variations commonly exist, and are
view. We see three probes of extreme ratio in the SK-BR-3-normal they likely to be a source of misinterpretation if ignored? The
hybridization that can be identified as polymorphisms by com- perhaps surprising answer is emphatically, yes.
parison to hybridization between the two normal individuals. Figure 6A indicates that there are gross regional differences
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Figure 6 (A) The results of a normal geno mic profile compared with a normal, identical to that displayed in Figure 2C2 with the exception that sing let
probes have been filtered as described in the text. (8) The serial comparison of experiments for a small region from Chromosome 4. The Y-axis is the
mean ratio in log scale. The X-axis is the genomic index, as described. The blue (85K) and red (10K) spots are from the comparison of SK-BR-3 to normal.
The green is a comparison of a pygmy to the normal reference. (C) A lesion found in the normal population on Chromosome 6. The blue spots are
plotted by mean ratio for analysis of the pygmy to the normal reference. The red line is the mean-segment value for the pygmy-to-normal reference
comparison. The green line is the mean-segment value for the SK-BR-3-to-normal reference comparison. The blue line is the segment value from the
primary tumor (CHTN1 59 aneuploid to diploid) comparison. (D) A region of Chromosome 2. The data shown in blue circles are from the comparison
of SK-BR-3 to the normal reference. The mean-segment line for this comparison is shown in green. The mean-segment line for the comparison of a
pygmy to the normal reference is shown in red and for the primary tumor CHTN1 59 in blue. For C and D, the calculated copy number for the horizontal
lines is found to the right of the panel.

in the normal-normal comparison. Indeed, many regions that tromeres, but can apparently occur anywhere. They often en-
display altered copy number between the two normal individuals compass known genes. We are presently investigating this phe-
are revealed upon segmentation analysis. Close inspections of nomenon more fully, and will report on them subsequently. For
two such regions are displayed in Figure 6, C and D, with ratios now, we show how they impact the interpretation of cancer-
as connected blue dots and copy number lattice values in orange. normal data.
In Figure 6C, the abnormal region is 135 kb on Chromosome In Figure 6, C and D, we have overlain the segmentation val-
6p2i (probe coordinates 32518-32524, June 2002 assembly, or ues from the analysis of SK-BR-3 in green. The copy number lattice
NCBI build 30 genomic coordinates 35669083-35804705), and for SK-BR-3 is plotted as orange lines. Figure 6C illustrates a region
encompasses three known genes. In Figure 6D, the region is a in SK-BR-3 that would be called a deletion in comparison to the
620-kb region from Chromosome 2pl I (probe coordinates 9927- normal. In SK-BR-3 compared to normal, the flanking region occurs
9952, June 2002 assembly, or NCBI build 30 genomic coordinates at a copy number that we judge to be two copies per cell, and within
88787694-89385815) that contains a number of heavy chain that region, copy number becomes reduced to one. But the same
variable regions. region appears in the comparison of pygmy DNA to the same nor-

We observe on the order of a dozen such regions in any mal. In Figure 6D, we observe an analogous condition on Chromo-
normal-normal comparison. They range from 100 kb to >1 Mb in some 2p11. In this panel, we have also plotted segmentation data
length and are more frequently observed near telomeres and cen- from the tumor. This region is evidently abnormal there as well.
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Hence, we are inclined to view this "lesion" as pre-existing in the highly reproducible standard product can be made available for
normal cells of the patient. wide usage. Again, each and every one of our probes can be

readily calibrated for performance, a property that cannot be
readily done with BAC probes. Finally, our arrays are based on

DISCUSSION oligonucleotides derived from the human sequence assembly,
the lingua franca of human genetics, and can therefore be pre-

Comparison of Methodologies for Global cisely and automatically mapped into all the databases of all

Genomic Analysis mapped genes and genetic disorders. This cannot be done with
We have described a method, representational oligonucleotide BACs, which can be unstable under propagation and can be chi-
microarray analysis, or ROMA, that is useful for detecting ampli- meric. The one advantage of BAC arrays is that they are presently
fications and deletions and sites of breakage in cancer and nor- cheaper, but that is likely to be a short-lived advantage.
mal genomes. Detection of these events can in principle be used cDNA arrays have also been used for measuring copy num-
to discover genes involved in cancer and other diseases of genetic ber mutations (Pollack et al. 1999; Hyman et al. 2002), whereby
origin, and serve as markers or guides for the diagnosis and treat- whole genomic DNA is hybridized to a cDNA expression array.
ment of such diseases. Because our method is sensitive to even These are presently insensitive. Moving averaging of the mea-
single nucleotide polymorphisms at restriction endonuclease sured probe ratios is used to decrease system noise, and this re-
sites, it could in principle also be used as a high-density array for sults in a decrease in resolution. Therefore this methodology is
detecting SNPs. useful for the detection of larger amplifications and deletions.

There are other methods for global analysis of cancers. Most However, detecting deletions is problematic because of overall
well known is the gene expression microarray (Chee et al. 1996; signal-to-noise issues of single fragment or oligonucleotide
DeRisi et al. 1996). This method does not find the primary lesions probes. ROMA has overcome this problem by decreasing the
in a cancer, but rather the sequels of mutation. Gene expression complexity of the genome, thereby increasing the signal-to-noise
microarrays are based on RNA extracted from tumors, and RNA is ratio for each probe.
a very unstable molecule, difficult to extract in a reliable manner.
Moreover, the outcome of expression array analysis will be ex- Is Our Knowledge of Cancer Complete?
tremely dependent on difficult-to-control factors such as sample Science has identified many of the commonly mutated genes in
handling, and other complicating physiological variables such as cance as wenow many of the celluly p ated on in
tumor infiltration by normal stroma and inflammatory cells. Our cancer, and we know many of the cellular pathways on whichmethod is based on DNA, a very stable molecule, easily extracted they act. Some think a basic theory of cancer is comprised of only
mev fod tisbasued on D ,as very mistanled molecle, eNaiy extrted a few basic principles, sufficient to explain the nature of theeven from tissue that has been mishandled. The DNA is the re- disease. However, it is a poor and unnecessary gamble to act as
pository of the causative molecular events, and the presence of though our theory is correct, or that our knowledge of specificnormal infiltrating stroma and inflammatory cells dilutes the thuhorheyiscrcorhaorknwdgofpcfc

nord nf aot inen d ilur s mthod facts is nearly complete. Future progress in detection, prognosis,
signal but does not change it. We do not intend for our method and treatment of cancer will depend on the accuracy and com-
to exclude RNA analysis, and in fact the two together would be pleteness of our understanding of its specific molecular causes.m o re v a lu a b le th a n e ith e r a lo n e . l t n s f o r u d r t n i g of i s s e i i o e u a a s s

There are simple tests for the completeness of our under-There are other DNA-based methods for measuring changes standing and knowledge of how cancers survive in and kill their
in copy number in cancers. The oldest of these is fluorescent in ding and knowledge of ho canes sure in an kill tei
situ hybridization (FISH), which is used clinically to evaluate am- hosts. If our knowledge of the genes were complete, we would see
plification at the ErbB-2 locus in breast cancer, for example (Tka- a plateau in the number of common mutant genes found in all
chuk et al. 1990; Bartlett and Mallon 2003). In work in progress, cancers wt o understandin of tc complete,
we have shown that our method is essentially equivalent for netic lesions would show only a small number of commonly
evaluating amplification at ErbB-2, but, of course, our method nete d show om a tha t if m moniyevaluates the entire genome, not just a single locus that may be affected pathways. It follows from this, that if mutation in a
important in selecting cancer therapy. The major advantage of single gene were sufficient to affect a given pathway, even ad-Fimo irtan t is essentially a single-cell assay that can thus be vanced cancers would show only a small number of commonlyFISH is that iaffected genes, the remainder of lesions being highly sporadic.
performed on very few cells, such as might be available upon The microarray-based method we have just described can
needle biopsy. Our method requires perhaps -2000 cells, and is a the array-base i es. We a ve iust lcibed the
mass measurement, not a single-cell assay. However, our method partially address these issues. We can readily identify loci in the
points to loci that may be converted into FISH-based assays, and genome that undergo amplification, deletion, and imbalancedthat is a major strength, breaks. Although there are many other possible mechanisms that

thatnisamajothr D strengt. malter critical genes, such as point mutations, balanced transloca-Another DNA-based method is the BAC array, which is a tions, and possibly stable epigenetic changes, many if not most
method that is more commonly known, and more widely prac- oncogenes and tumor suppressor genes will eventually be found
ticed, than our method (Pinkel et al. 1998; Snijders et al. 2003). in the types of lesions that we can readily detect. Moreover, if a
Present BAG arrays suffer from much lower resolution, on the region is commonly found altered in cancers, that region harbors
order of 3000 probes. At their maximum, 30,000 member arrays, aegood candidate cancer s, thatpregion ofror
there are still fewer probes into the genome, and the size of the a good candidate cancer gene. Therefore, the application of our
BAC, 150 to 200 kb, ultimately obscures high resolution. For method to a large series of cancers, and the comprehensive con-
example, we can observe very small deletions and amplifications parative analysis of such data, should reveal the existence and
that would be entirely missed with even high-density BAC arrays.
Additionally, because our method is based on representations,
our sample size can be smaller than is needed for the standard Sources of Cancer Genomes
BAC array protocol. (However, users of BAC arrays may use our We have demonstrated the application of our method to two
representational approaches to diminish their need for large types of sample: a tumor and a cancer cell line. There are advan-
sample sizes.) Furthermore, BAC arrays cannot be fabricated to tages and problems associated with each type. Cancer cell lines
industrial standards, as can our arrays. The composition of our are "universal" reagents. They are self-replenishing, and can be
arrays is precisely specified, nucleotide for nucleotide, and a passed between investigators. There is always ample material for
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analysis, and they tend to be monoclonal. They are suitable for public human sequence is reasonably well assembled, we auto-
further functional analysis, whether by gene expression profil- matically have associated map positions for every probe that are
ing, genetic manipulation to restore or block a suspected tumor as accurate as the genome assembly. The algorithms we use for
suppressor gene or oncogene, or by tumorigenicity studies. Al- designing these probes are in part described here, and in part in
most always there is no matched normal to control for scattered Healy et al. (2003). Our approach allows us to design probes that
polymorphic variation, but as we have described above, this is have minimal cross-reaction to the remainder of the genome.
not a serious limitation, as long as the unmatched normal can be Microarrays for any species, for example, mouse, can be built in
characterized. The significant disadvantages of cell lines are that short order once a reliably complete and assembled genome se-
they can drift genetically, and they have undergone selection by quence is publicly available.
virtue of their survival in tissue culture. There is a limited reper- There are many advantages to an oligonucleotide microar-
toire of such cell lines, and no correlations between clinical pre- ray format. The composition of the microarray is precisely for-
sentation and copy number can be made. mulated, and hence entirely reproducible by others. The work

The direct analysis of tumor material offers many opportu- presented here demonstrates the equivalence of measurements
nities. There is a virtually unlimited source of different samples, achieved by the printed and light directed microarray formats.
and they can often be matched to the same normal, easing some- Using printed arrays we can achieve densities of 30,000 probes
what the analytical burden of interpretation. It is in principle per slide, and using in situ light-directed synthesis, we have
possible to determine whether there are clinical parameters, such achieved densities of 190,000, although only 85K data are illus-
as survival and drug responsiveness, that correlate with specific trated here. The latter technique has many advantages over the
gene amplification, deletions, and breakage, or overall patterns printed array. Besides achieving higher density, the layout of
of genomic instability. These correlations may find utility in the probes and the choice of probes are flexible. Although the unit
treatment of patients. The disadvantages of tumor material are cost of printed arrays is presently below the costs of light-directed
also clear. Tumors are always contaminated with stroma, can be microarrays, with the latter there is no need for a large initial
oligoclonal, poorly preserved, and available in limiting amounts. capital expenditure for the purchase of oligonucleotides.
Fortunately, our method seems to be highly sensitive, and does Our method is dependent on representations. Without com-
not require vast amounts of starting material. We routinely start plexity reduction, which increases the concentration of DNA
from 50 ng of sample, which corresponds to -10,000 nuclei, and complementary to the probes, signal intensity from specific hy-
the method can be practiced with as few as 2000 nuclei or less. bridization is too weak to measure above background. Depen-
Either flow sorting or microdissection can enrich tumor purity, dence on representations is a mixed blessing. Representations use
but amplifications and many deletions will be observable even PCR both for the amplification of sample and complexity reduc-
with material that is only 50% tumor (reconstruction experi- tion. As a consequence, very little sample is required. However,
ments; data not shown). PCR does introduce noise, and this requires that the test sample

be compared with a control sample that is prepared exactly in
parallel. We find that if the starting DNAs of test and control are

Technological Critique of comparable quantity and quality, then subsequent parallel
Our method rests on three pillars: complexity reduction by rep- sample preparation, from PCR to labeling, is usually sufficient to
resentations, the human genome assembly, and oligonucleotide give data of the type that is illustrated in this report.
microarrays. There are a finite number of repeat-free 70-mer-long oligo-

Because of the success of the human genome sequencing nucleotide probes in the genome that are useful for measuring
project, and the reproducibility of representations, we are able to BglII representations. We estimate that there are on the order of
design oligonucleotide probes that are complementary to a given 120,000 of these scattered about the genome in a Poisson-like
representation, such as the BgtII representations that we have distribution, and the distribution of probes does not reflect the
used here. Because the human genome sequence is very reliable, distribution of genes. At present we only array -85,000 probes.
at least locally, we are able to experimentally validate our com- Although the average distance between these 85,000 probes is
putationally derived designs by exploiting the known restriction -30 kb, there are regions of the genome that are very poorly
endonuclease sites in our fragments (see Fig. 1). In principle, we represented. We are therefore designing other types of represen-
can thus calibrate every probe's performance. The detection of tations, and other formats of probes, that will give us even higher
these -1800 predicted probes validates the ability of this method coverage of the genome. In principle, any desired density of coy-
to detect and identify copy number fluctuations. There are -10% erage is possible.
of the probes that are poor performers in the pin printed format.
By calibrating the probes, performance can be accounted for dur-
ing further analysis. Performance improves with the photo- Data Interpretation
print format because of the empirical selection of the oligo- All array-based data require interpretation using statistical tools
nucleotides. of varying sophistication. Ours is no exception, but our system is

Of the 8000 probes predicted to hybridize to fragments not relatively unique. First, unlike cDNA expression profiling, there
cleaved by HindIll (see Fig. 1), 716 appear to hybridize to BglII are clear theoretical expectations of copy number measurements.
fragments that are in fact cleaved. We estimate that these 16 When comparing a test sample to a normal genome, there is a
detect homozygous and heterozygous HindIlI sites, in equal pro- clear expectation of how normals, except for polymorphisms,
portion. We attribute this to a divergence of about one nucleo- will behave. Moreover, if the test sample is clonal, we expect
tide in 300 between our sample and the published human se- probe ratios to be clustered, reflecting discrete integral copy
quence, which could result from either polymorphism or se- numbers per cell. Second, because the restriction endonuclease
quencing errors. If this number were mainly caused by profile of fragments is known, virtually all probes can be cali-
polymorphism, then roughly one in 30 BgIII fragments would brated, and array performance can be very accurately modeled.
also be polymorphic. From other experiments, we estimate that Third, because the probes are ordered in the genome, and lesions
the rate of BglII polymorphism between unrelated individuals is are expected to be regional, with defined starts and stops, the
more on the order of one in 60, corresponding to a divergence expectation is that consecutive probe ratios within these regions
from the published human sequence of 1 in 600. Because the will share a distribution. Thus, we have developed "segmenta-
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tion" algorithms that are designed to parse the data into regions indicates that the majority of these normal variations are, in-
with similar distributions. deed, alterations in the gene pool. If there is, in fact, widespread

Our present segmentation algorithm requires a minimum of copy number variation in humans, such variation might well
three probes to define a lesion, but clearly this is conservative, contribute to human traits, including disease susceptibility and
For example, when our tumor sample is compared with a resistance.
matched normal, polymorphisms are controlled, and even a
single probe with an elevated copy number in the tumor is likely METHODS
to be meaningful. Other approaches to data analysis should be
pursued, and we are attempting to integrate polymorphism data, Reagents
probe calibration data, and probe intensity data into a more com- Oligonucleotides were synthesized by Illumina Inc. Human
prehensive model. Our present methods are not finished, but Cot-i DNA (15279-011) and yeast tRNA (15401-029) were sup-
they are clearly already useful. We expect that the borders of plied by Invitrogen Inc. Restriction enzymes, ligase, and Klenow
regions can be drawn very sharply, most often to within a single fragments (M0212M ) were supplied by New England Biolabs.
probe, and this is confirmed in modeling experiments (data not The Megaprime labeling kit, Cy3-conjugated dCTP, and CyS-
shown). conjugated dCTP were supplied by Amersham-Pharmacia. Taq

We will report on our progress in statistical methods in sub- polymerase was supplied by Eppendorf. Centricon YM-30 filters
were supplied by Amicon (42410), and formamide was supplied

sequent publications. In the end, however, no statistical inter- by Amresco (0606-500). Phenol:chloroform was supplied by
pretation of a single experiment is certain, and only the accumu- Sigma (P2069). NimbleGen photoprint arrays were a gift from
lation of larger data sets and molecular confirmation can increase NimbleGen Systems Inc.
confidence in a conclusion.

Representation
BglII representations, in general, were prepared as previously de-

Normal Polymorphic Variation scribed (Lucito et al. 2003b). A major change is that amplification
Scattered polymorphism is evident in comparison of normal in- was carried out in an MJ Research Tetrad. Sixteen 250-pL tubes
dividuals, and even in the comparison of a single individual in a were used for amplification of the representation. The cycle con-
"depletion" experiment (see Fig. 1). Most of these likely arise ditions were 95'C for 1 min, 72°C for 3 min, for 25 cycles, fol-
from single nucleotide polymorphisms in the human popula- lowed by a 1O-min extension at 72°C. The contents of the tubes
tion. For example, loss of a BgllI site may cause a fragment to be were pooled when completed. Representations were cleaned byphenol:chloroform extraction, precipitated, resuspended, and
absent in a BglII representation. Such events can interfere in data the concentration determined. Representations depleted of spe-
interpretation in several ways. Except for the case of increased cific fragments by restriction enzyme were prepared in the same
copy number in a matched tumor-normal, the ratio from a single manner with the following modification. After ligation of adap-
probe outlier cannot be considered a somatic lesion, as it may tor, the mixture was cleaned by phenol:chloroform extraction,
represent a genetic polymorphism, with or without loss of het- precipitated, and resuspended. The ligated fragments were then
erozygosity. Similarly, the boundaries of a segment may not be digested with the second chosen enzyme. In the text, HindlIl was
accurately called if the bounding probe is complementary to a used. This material was then used as template in the PCR reac-
polymorphic fragment. Lastly, a string of probes that by chance tion.
are all complementary to polymorphic fragments may give rise to Probe Selection
the appearance of a consistent lesion. Fortunately, the frequency
of these polymorphisms is low, less than one fragment in 30, so We performed an in silico BgIII digestion of the human genome
most boundaries are not obscured, and runs of polymorphisms by locating all BglII restriction sites within the present draft as-

o y.Mr sembly and storing all sequences of BglII fragments that are be-with the appearance of a lesion will occur rarely. Much of the tween20ad10 g p qn le gth Fr gmnswranoteten200 and 1200 bp in length. Fragments were annotated
informatic "damage" caused by polymorphisms can be con- with the counts of their substituent, overlapping 15-mers and
tained, either by filtering out scattered outliers, or by accumulat- 21-mers using the "mer-engine" constructed from the same draft
ing data on normal genomes used for comparisons, assembly (see accompanying manuscript by Healy et al. 2003).

There is another type of "polymorphism" that we see, which For each fragment, the following attributes were determined for
for now we call "copy number" polymorphism. This type is every substituent, overlapping 70-mer: maximum 21-mer count,
much more interesting, and more pernicious, than scattered arithmetic mean of 15-mer counts, percent GC content, the
polymorphism, and it is documented in Figure 6. A series of quantity of each base, and the longest run of any single base. All
regionally clustered probes may display a consistently altered ra- 70-mer probes that possess any of the following characteristics
tio in the comparison of one normal sample against another. We were eliminated: maximum 21-mer count >1, GC content <30%

or >70%, a run of A/Ts >6 bases, a run of G/Cs >4 bases. From thesee these regions in every normal-normal comparison that we remaining set of 70-mers, the one (or more) that has a GC/AT
have made, and many of these lesions appear in cancer-normal proportionality closest to that of the genome as a whole as well
comparisons. In fact, some of these regions may be prone to as a minimal mean 15-mer count were selected. As a final check
genomic instability (see Fig. 6D). They vary in size from <100 kb for overall uniqueness, the optimal probes for each fragment
to in excess of 1 Mb, and in most cases encompass genes. Creat- were compared with the entire genome using BLAST (default pa-
ing a large database of normal-normal comparisons may mitigate rameters were used with the exception of filtration of low com-
the misinterpretation of these lesions as somatic events occurring plexity sequence, which was not performed). Any probe found to
in cancer, and this is something we intend to do. have any degree of homology along 50% or more of its length to

Our present hypothesis is that these normal-normal varia- any sequence other than itself was eliminated.
tions are in fact copy number polymorphisms, genetic in origin, Printed Arrays
but this is by no means proven here, nor is it the only plausiblehypothesis. For example, these variant regions might be caused We used the Cartesian PixSys 5500 (Genetic Microsystems) to

array our probe collection onto slides. We are presently using a
by locally high sequence divergence, or the consequence of 4 x 4 pin configuration. The dimension of each printed array
highly altered chromatin structure, affecting the yield of DNA was roughly 2 cm'. Our arrays were printed on commercially
during purification from nuclei. Additional experimentation is prepared silanated slides (Corning ultraGAPS #40015). Pins used
needed to resolve these questions, and work in progress strongly for the arrayer are from Majer Precision.
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Labeling the printing of oligonucleotides. Tumor samples were supplied

DNA was labeled as described (Lucito et al. 2003a). Briefly, place by the Cooperative Human Tissue Network, which is funded by

DNA template (dissolved in TE at pH 8) in a 0.2-mL PCR tube. the National Cancer Institute. Other investigators may have re-

Add 10 pL of Primers from the Amersham-Pharmacia Megaprime ceived samples from these same tissues. This work was supported

labeling Kit and pipette up and down several times. Bring volume by grants awards to M.W. from the National Institutes of Health

up to 100 pL with dH2O, and mix. Place tubes in Tetrad at 100°C and NCI (SR01-CA78544; 1R21-CA81674; 5R33-CA81674-04);

for 5 min, then place on ice for 5 min and add 20 pL of labeling Tularik Inc.; 1 in 9: The Long Island Breast Cancer Action Coa-

buffer from the Amersham-Pharmacia Megaprime labeling Kit, lition; Lillian Goldman and the Breast Cancer Research Founda-

10 pL of label (Cy3-dCTP or CyS-dCTP), and 1 pL of NEB Klenow tion; The Miracle Foundation; The Marks Family Foundation;

fragment. Place the tubes in a Tetrad and incubate at 37'C for 2 Babylon Breast Cancer Coalition; Elizabeth McFarland Group;

h. Combine the labeled samples (Cy3 and Cy5) into one Eppen- and Long Islanders Against Breast Cancer. Support was granted to
dorf tube and add 50 pL of 1 pg/pb human Cot 1 DNA, 10 pL of R.L. from the National Institutes of Health and NCI (K01

10 mg/mL stock yeast tRNA, and 80 pbL of Low TE (3 mM Tris at CA93634-01). M.W. is an American Cancer Society Research Pro-

pH 7.4, 0.2 mM EDTA). Load all into a Centricon Filter and cen- fessor.

trifuge for 10 min at 12,600 rcf. Discard flowthrough and wash The publication costs of this article were defrayed in part by

with 450 pL of Low TE. Centrifuge at 12,600 rcf and repeat twice, payment of page charges. This article must therefore be hereby

Collect the labeled sample by inverting the centricon column marked "advertisement" in accordance with 18 USC section 1734

into a new tube and centrifuging for 2 units at 12,600 rcf. Trans- solely to indicate this fact.

fer labeled sample to a 200-pbL PCR tube and adjust volume to 10
pL of Low TE. REFERENCES

Bartlett, J. and Mallon, E.C.T. 2003. The clinical evaluation of HER-2
Slide Preparation status: Which test to use? J. Pathology 199: 418-423.
Slides were prepared as in Lucito et al. (2003a) with the following Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D.,

Winkler, J., Lockhard, DJ., Morris, M.S., and Fodor, S.P. 1996.
changes. Prehybridization buffer for printed microarrays con- Accessing genetic information with high-density DNA arrays. Science
sisted 6f the following, 25% deionized formamide, 5 x SSC, and 274: 610-614.
0.1% SDS. Pour into a coplin jar or other slide processing cham- DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M.,
ber and preheat to 61°C. UV cross-link DNA to slide (using a Chen, Y., Su, Y.A., and Trent, J.M. 1996. Use of a cDNA microarray
Strategene Statalinker, set Energy to 300 mJ, rotate slide 1800, to analyse gene expression patterns in human cancer. Nat. Genet.
keeping the slide in the same spot in the cross-linker, and repeat). 14: 457-460.
NimbleGen photoprinted arrays do not require UV cross-linking. Gemmill, R.M., West, J.D., Boldog, F., Tanaka, N., Robinson, L.J., Smith,
Wash slides in the following solutions: 2 mn in 0.1% SDS, 2 min D.I., Li, F., and Drabkin, H.A. 1998. The hereditary renal cellcarcinoma 3;8 translocation fuses FHIT to a patched-related gene,
in milliQ H20, 5 min in milliQ H20 that has boiled, and finally TRC8. Proc. Natl. Acad. Sci. 95: 9572-9577.
in ice cold 95% benzene-free EtOH. Dry slides by placing in a Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M.,
metal rack and spin at 75 rcf for 5 min. Printed microarray slides Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et
were incubated in the 61'C prehyb solution. After 2 h, wash al. 1999. Molecular classification of cancer: Class discovery and class
slides in milliQ H 20 for 10 sec. Dry slides by placing in a metal prediction by gene expression monitoring. Science 286: 531-537.
slide rack and spin for 5 min at 75 rcf. NimbleGen photoprinted Hamaguchi, M., Meth, J.L., von Klitzing, C., Wei, W., Esposito, D.,
arrays do not require prehybridization. Rodgers, L., Walsh, T., Welcsh, P., King, M.-C., and Wigler, M. H.

2002. DBC2, a candidate for a tumor suppressor gene involved in
breast cancer. Proc. Natl. Acad. Sci. 99: 13647-13652.Hybridization Healy, J., Thomas, E.E., Schwartz, J.T., and Wigler, M.H. 2003.

The hybridization solution for printed slides consisted of 25% Annotating large genomes with exact word matches. Genome Res.
formamide, 5 x SSC, and 0.1% SDS. The hybridization solution (this issue).
for NimbleGen photoprinted arrays consisted of 50% formamide, Hyman, E., Kauraniemi, P., Hautaniemi, S., Wolf, M., Mousses, S.,

0i Rozenblum, E., Ringner, M., Sauter, G., Monni, 0., Elkahloun, A., et5x SSC, and 0.1 SDS. For each, 25 pL of hybridization solution al. 2002. Impact of DNA amplification on gene expression patterns
was added to the 10 pL of labeled sample and mixed. Samples in breast cancer. Cancer Res. 62: 6240-6245.
were denatured in an MJ Research Tetrad at 95'C for S min, and Ilyin, G.P., Rialland, M., Pigeon, C., and Guguen-Guillouzo, C. 2000.
then incubated at 37'C for 30 min. Samples were spun down and cDNA cloning and expression analysis of new members of the
pipetted onto a slide prepared with lifter slip and incubated in a mammalian F-box protein family. Genomics 67: 40-47.
hybridization oven such as the Boekel InSlide Out oven set at Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C.,
58°C for printed arrays or 42°C for NimbleGen photoprinted ar- Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al.
rays for 14 to 16 h. After hybridization, slides were washed as 2001. Initial sequencing and analysis of the human genome. Nature

409: 860-921.
follows: brief wash in 0.2% SDS/0.2% SDSC0. SSC to remove the cover- Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J.,
slip, 1 min in 0.2% SDS/0.2× SSC, 30 sec in 0.2× SSC, and 30 sec Miliaresis, C., Rodgers, L., McCombie, R., et al. 1997. PTEN, a
in 0.05 X SSC. Slides were dried as before by placing in a rack and putative protein tyrosine phosphatase gene mutated in human
spinning at 75 rcf for 5 min, and then scanned immediately. An brain, breast, and prostate cancer. Science 275: 1943-1947.
Axon GenePix 4000B scanner was used setting the pixel size to 10 Lin, M.Z. and Greenberg, ME. 2000. Orchestral maneuvers in the axon:
pm for printed arrays and 5 pm for NimbleGen photoprinted Trio and the control of axon guidance. Cell 101: 230-242.
arrays. GenePix Pro 4.0 software was used for quantitation of Lisitsyn, N., Lisitsyn, N., and Wigler, M. 1993. Cloning the differences
intensity for the arrays. Array data were imported into S-PLUS for between two complex genomes. Science 258: 946-951.

Lucito, R., Nakimura, M., West, J.A., Han, Y., Chin, K., Jensen, K.,further analysis. Measured intensities without background sub- McCombie, R., Gray, J.W., and Wigler, M. 1998. Genetic analysis
traction were used to calculate ratios. Data were normalized using using genomic representations. Proc. Natl. Acad. Sci. 95: 4487-4492.
an intensity-based lowest curve fitting algorithm similar to that Lucito, R., West, J., Reiner, A., Alexander, J., Esposito, D., Mishra, B.,
described in Yang et al. (2002). Data obtained from color reversal Powers, S., Norton, L., and Wigler, M. 2000. Genetic alterations in
experiments were averaged and displayed as presented in the cancer detected by hybridization to micro-arrays of genomic
figures. representations. Genome Res. 10: 1726-1736.

Lucito, R. and Wigler, M. 2003a. Preparation of Slides and
Hybridization. In Microarray-based representational analysis of DNA

ACKNOWLEDGMENTS copy number (eds. D. Bowtell and J. Sambrook), pp. 394-399. Cold
Spring Harbor Press, Cold Spring Harbor, NY.

We thank Emile Nuwaysir and Todd Richmond of NimbleGen Lucito, R. and Wigler, M. 2003b. Preparation of Target DNA. In
Systems Inc. for providing slides and support, and Masaaki Microarray-based representational analysis of DNA copy number (eds. D.
Hamaguchi for critical comments on the manuscript. We also Bowtell and J. Sambrook), pp. 386-393. Cold Spring Harbor Press,
thank Joe Derisi and Michael Eisen for technical comments on Cold Spring Harbor, NY.

2304 Genome Research
www.genome.org



Microarray Analysis of Gene Copy Number Variations

Mu, D., Chen, L., Zhang, X., See, L.-H., Koch, C.M., Yen, C., Tong, Jj., Snijders, A.M., Nowee, M.E., Fridlyand, J., Piek, J.M., Dorsman, J.C.,
Spiegel, L., Nguyen, K.C.Q., Servoss, A., et al. 2003. Genomic Jain, A.N., Pinkel, D., van Diest, P.J., Verheijen, R.H., and Albertson,
amplification and oncogenic properties of the KCNK9 potassium D.G. 2003. Genome-wide-array-based comparative genomic
channel gene. Cancer Cell 3: 297-302. hybridization reveals genetic homogeneity and frequent copy

Nurnberg, P., Thiele, H., Chandler, D., Hohne, W., Cunningham, M.L., number increases encompassing CCNE1 in Fallopian tube
Ritter, H., Leschik, G., Uhlmann, K., Mischung, C., Harroop, K., et carcinoma. Oncogene 22: 4281-4286.
al. 2001. Heterozygous mutations in ANKH, the human ortholog of Tkachuk, D.C., Westbrook, C.A., Andreeff, M., Donlon, T.A., Cleary,
the mouse progressive ankylosis gene, result in craniometaphyseal M.L., Suryanarayan, K., Homge, M., Redner, A., Gray, J., and Pinkel,
dysplasia. Nat. Genet. 28: 37-41. D. 1990. Detection of bvr-abl fusion in chronic myelogeneous

Olshen, A.B. and Venkatraman, E.S. 2002. Change-point analysis of leukemia by in situ hybridization. Science 250: 559-562.
array-based comparative genomic hybridization data. American Van't Veer, LJ., Dai, H., van de Vijver, Mj., He, Y.D., Hart, A.A.M.,
Statistical Association, Alexandria, VA. Mao, M., Peterse, H.L., van der Kooy, K., Marton, Mj., Witteveen,

Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., A.T., et al. 2002. Gene expression profiling predicts clinical outcome
Collins, C., Kuo, W. L., Chen, C., Zhai, Y., et al. 1998. High of breast cancer. Nature 415: 530-536.
resolution analysis of DNA copy number variation using Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., and Speed,
comparative genomic hybridization to microarrays. Nat. Genet. T.P. 2002. Normalization for cDNA microarray data: A robust
20: 207-211. composite method addressing single and multiple slide systematic

Pollack, J.R., Perou, C.M., Alizadeh, A.A., Eisen, M.B., Pergamenschikov, variation. Nucleic Acids Res. 30: e15-15.
A., Williams, C.F., Jeffrey, S.S., Botstein, D., and Brown, P.O. 1999.
Genome-wide analysis of DNA copy-number changes using cDNA
microarrays. Nat. Genet. 23: 41-46.

Sen, A. and Srivastava, M.S. 1975. On tests for detecting change in WEB SITE REFERENCES
mean. Ann. Stat. 3: 98-108. http://roma.cshl.org/; ROMA.

Singh-Gasson, S., Green, R.D., Yue, Y., Nelson, C., Blattner, F., Sussman,
M.R., and Cerrina, F. 1999. Maskless fabrication of light-directed
oligonucleotide microarrays using a digital micromirror array. Nat.
Biotech. 17: 974-978. Received March 20, 2003; accepted in revised form August 1, 2003.

Genome Research 2305
www.genome.org



APPENDIX 3

March 2004

Circular Binary Segmentation for the Analysis

of Array-based DNA Copy Number Data

Adam B. Olshen, E. S. Venkatraman

Department of Epidemiology and Biostatistics

Memorial Sloan-Kettering Cancer Center

1275 York Avenue, New York, NY 10021

e-mail: olshenaQmskcc.org

Robert Lucito, Michael Wigler

Cold Spring Harbor Laboratory

Cold Spring Harbor, NY 11724

Abstract
DNA sequence copy number is the number of copies of DNA at a re-

gion of a genome. Cancer progression often involves alterations in DNA

copy number. Newly developed microarray technologies enable simultane-

ous measurement of copy number at thousands of sites in a genome. We
have developed a modification of binary segmentation, which we call cir-

cular binary segmentation, to translate noisy intensity measurements into
regions of equal copy number. The method is evaluated by simulation and

is demonstrated on cell line data with known copy number alterations and

on a breast cancer cell line data set.

Key Words: change-point, binary segmentation, array CGH, ROMA



1 Introduction

The DNA copy number of a region of a genome is the number of copies of genomic

DNA. In humans the normal copy number is two for all the autosomes. Variations

in copy number are common in cancer and other diseases. These variations are a

result of genomic events causing discrete gains and losses in contiguous segments of

the genome. For this reason, efforts have been made over the last ten years to make

whole genome copy number maps from a single study. Technologies to accomplish

this have included comparative genomic hybridization (CGH) (Kallioniemi et al.,

1992) and representational 'difference analysis (RDA) (Lisitsyn et al., 1993). In

order to increase the resolution of the resulting maps, both techniques have been

modified for use with microarrays, the laboratory techniques of which are similar

to cDNA gene expression experiments. Each microarray consists of thousands of

genomic targets or probes, which we will sometimes refer to as markers, that are

spotted or printed on a glass surface. In a copy number experiment a DNA sample

of interest, called the test sample, and a diploid reference sample are differentially

labelled with dyes, typically Cy3 and Cy5, and mixed. This combined sample is

then hybridized to the microarray and imaged which results in test and reference

intensities for all the markers.

The modification of conventional CGH to obtain high resolution data is called

array CGH (aCGH) (Pinkel et al. 1998; Snijders et al. 2001). Here the genomic

targets are bacterial artificial chromosomes (BACs), which are large segments of

DNA, typically 100 - 200 kilobases. Representational Oligonucleotide Microarray

Analysis (ROMA) (Lucito et al., 2000; Lucito et al., 2003) is the high resolu-
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tion version of RDA. In ROMA, the test and reference samples are based on

"representations," (Lisitsyn et al., 1993), which are subsets of a genome. To

create representations, genomic DNA is first shattered using an enzyme. The

DNA pieces of proper size, less than 1.2 kilobases, are then selectively amplified

by PCR. Importantly, the positions of shearing and pieces that amplify are the

same every time. Typically, a representation contains less than 5% of the original

.sample. The reduction in complexity of a representation compared to the orig-

inal sample leads to a reduction in hybridization to the wrong marker, which is

termed cross-hybridization. Thus the DNA segments on a ROMA array can be

much smaller than for other types of copy number arrays. A third technique to

estimate copy number is to simply employ the same cDNA arrays used for gene

expression studies (Pollack et al., 1999; Pollack et al., 2002).

The data from array based copy number experiments are the test and reference

sample intensities for each marker. Since we assume that the reference sample does

not have any copy number aberrations, markers with normalized test intensities

significantly greater than the reference intensities are indicative of copy number

gains in the test sample at those positions. Similarly, significantly lower intensities

in the test sample are signs of copy number losses. The statistical methods for

analyzing copy number data are thus aimed at identifying locations of gains or

losses of copy numbers.

The most common method of analysis for these data is to identify gains and

losses using thresholds, such as in Weiss et al. (2003). These thresholds are of-

ten based on the variability of data from experiments where the test sample and

3



the reference sample are the same normal tissue. Sometimes, the data are first

smoothed via local averaging. A variant of the typical analysis can be seen in Pol-

lack et al. (2002). Here, the data were smoothed and a statistic was calculated for

each marker in normal-normal experiments by averaging over an optimally deter-

mined window size. Then, a threshold was determined for gains or losses based on

the false discovery rate (Benjamini and Hochberg 1995). A model-based approach

for array copy number data is due to Hodgson et al. (2001). They fit a three-

component normal mixture model to mouse islet tumor data. In this model, there

is one component for "decreased" copy number, one for "normal" copy number,

and one for "increased" copy number. Autio et al. (2003) developed CGH-Plotter

which combines filtering, 3-means clustering and dynamic programming to split

CGH data into three groups as above. A promising approach is due to Snijders

et al. (2003). They developed heuristic methods for fitting a Gaussian hidden

Markov model to array copy number data. Linn et al. (2003) used a change-point

model on RNA expression data to obtain the maximum likelihood estimate of the

location of a copy number change, which they then compared to estimates from

array DNA copy number data.

The model underlying our work is that gains or losses of copy number are

discrete. These aberrations occur in contiguous regions of the chromosome that

often cover multiple markers up to whole chromosome arms or chromosomes. In

addition, the array copy number data can be noisy, so that some markers will not

reflect the true copy number in the test sample. Therefore, we seek a method to

split the chromosomes into regions of equal copy number that accounts for the
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noise in the data. We propose a modification of binary segmentation (Sen and

Srivastava, 1975) that we call circular binary segmentation (CBS) for this. Our

method is novel in that it provides a natural way to segment a chromosome into

contiguous regions and bypasses parametric modeling of the data with its use of

a permutation reference distribution.

The rest of the manuscript is organized as follows. In Section 2 we show the re-

lationship between the identification of aberrant genomic regions and change-point

problems and introduce the CBS methodology. Results of using the approach of

Section 2 to array CGH cell line data with known aberrations are covered in

Section 3. In Section 4 results are shown from application to ROMA data from

twenty three breast cancer cell lines. In Section 5 we study the accuracy of the

CBS method via simulation. We summarize our results and discuss future direc-

tions in Section 6.

2 Change-point methods

We will now show the connection between estimating the locations of regions

with aberrant DNA copy numbers and the change-point detection problem. This

makes change-point methods a natural framework to approach the analysis of

array DNA copy number data. Let X 1 , X2 ,... be a sequence of random variables.

An index v is called a change-point if Xl,...,X, have a common distribution

function F 0 and Xv+ 1,... have a different common distribution function F, until

the next change-point if one exists). Shaban (1980) and Basseville (1988) provide

extensive reviews of change-point problems and methods.
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In array copy number studies the data to be analyzed are naturally ordered

by the marker location along the chromosome of interest. The data are the test

and reference intensities for each marker (denoted It,, and 'In respectively for

marker in). These intensities are related to the DNA copy number in the test

and the reference samples, Ctm and Cr,, respectively. This relationship is mod-

eled as It, = /3tmCt,(1 '+ c) and ',m = /3rmCin(1 + c), where the parameters

(0s) depend on factors such as sample amplification, probe affinity and labeling

and Es are random errors. Note that the normalization of data used to correct

for the factors above, centers the log ratio of the intensities around zero. This

makes the copy numbers unidentifiable without some additional modeling, since,

for example, the normalized data from diploid and triploid test samples will ap-

pear similar. However, the location of the log ratio of the intensities changes

whenever iltmCtm/(/3rmCii) changes and thus the corresponding marker indices

are the change-points we want to detect. Since the reference sample is assumed

to have no abnormalities and the log ratio of the O3s is assumed to be constant, all

the change-points correspond to changes in the copy numbers of the test sample.

The array data to be used for change-point detection are the log ratio of

normalized intensities indexed by the marker locations. Observe that there may

be multiple change-points in a given chromosome, each corresponding to a change

in the copy number in the test sample. Our goal is to identify all the change-points

which will then partition the chromosome into segments where copy numbers are

constant. Once the chromosome is partitioned we can estimate the copy numbers

of the segments with the help of additional information such as the ploidy of the

6



chromosome. This will provide the locations of copy number aberrations.

Let X 1, .. . , X, be the log ratios of the intensities, which are indexed by the

locations of the n markers being studied and let Si = X1 + ... + Xi, 1 < i < n,

be the partial sums. When the data are normally distributed with a known

variance (without loss of generality 1), the likelihood ratio statistic for testing

the null hypothesis that there is no change against the alternative that there is

exactly one change at an unknown location i (Sen and Srivastava, 1975) is given

by ZB = maxl<i<. JZil, where

Zi = {1/i + 1/(n - i)}/ 2{Si/i - (Sn - Si)/(n - i)}.

The null hypothesis of no change is rejected if the statistic exceeds the upper

ath quantile of the null distribution of ZB and the location of the change-point is

estimated to be i such that ZB = IZi1. Sen and Srivastava derived the critical value

to be used for the test by Monte Carlo simulations. It can be computed quickly

using the approximation for the tail probabilities of the test statistic given by

Siegmund (1986). The binary segmentation procedure applies the test recursively

until no more changes are detected in any of the segments obtained from the

change-points detected thus far.

The binary segmentation procedure was shown to be consistent under suitable

regularity conditions (Vostrikova, 1981). If the variance is unknown the procedure

can be extended with a good estimate of it derived from the data. Note that in

this case the statistics Zi is replaced by the corresponding t-statistic and the

overall statistic to test for a change is the maximum of these absolute t's. Since

the binary segmentation procedure is based on a test to detect a single change, a

7



potential problem with it is that it cannot detect a small changed segment buried

in the middle of a large segment (Venkatraman, 1992). We propose the following

modification of the binary segmentation procedure to address this problem.

This problem with the binary segmentation procedure is due to the fact that

it looks for only one change-point at a time. Levin and Kline (1985) proposed

a statistic to test for no change against the epidemic or square wave alternative

with two change-points. (In the square wave alternative the mean up to the first

change and after the second are assumed to be the same.) If we consider the

segment to be spliced at the two ends to form a circle, the likelihood ratio test

statistic for testing the hypothesis that the arc from i + 1 to j and its complement

have different means is given by:

Zij = {1/(j -i)+ 1/(n-j+i)}-1 1 2{(Sj -S)/(j -i) - (S.-S ±j+S)/(n-j+i)}.

Our modification of the binary segmentation procedure, which we call circular

binary segmentation (CBS), is based on the statistic Zc = maxl<<j<n I Zij I. Note

that Zc allows for both a single change (j = n) and the epidemic alternative (j <

n). As before we declare a change if the statistic exceeds an appropriate threshold

level based on the null distribution. This critical value when the Xis are normal

can again be computed using Monte Carlo simulations or the approximation given

by Siegmund (1986) for the tail probability. Once the null hypothesis is rejected

the change-point(s) is (are) estimated to be i (and j) such that Zc = IZijI and the

procedure is applied recursively to identify all the changes. Other change-point

detection schemes such as one based on the Schwartz criterion (Yao, 1988) could

also be used for the analysis of array copy number data.
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An issue that can arise with the CBS procedure is the edge effect in the

estimation of the change-points. That is, if the i and j that correspond to the

maximal statistic are such that either i is "close" to 1 or j is "close" to n, then

there might be only one true change instead of the two changes suggested by

the data. We undo a change if the data does not support it as follows. First,

we test whether the data supports i to be a viable change-point for the segment

X1,... , Xj and undo the change at i if it is not a viable change-point. A similar

test is performed for j. Note this is testing for a binary split. Since it is difficult

to determine whether a change-point is "close" to the boundary based just on the

values of i and j, we currently perform this test on all change-points derived from

ternary splits, that is, splits that result in three different pieces.

The reference distributions used so far were derived using the normality of

the data. We can generalize the procedure to non-normal data by generating a

reference distribution using a permutation approach as follows. Under the null

hypothesis of no change-point in the data, the Xis are identically distributed.

Let X*, . . . ,X* be a random permutation of the data and let Zý = max IZ I be

the statistic derived as above from the permuted data. The threshold value can

be chosen to be the upper ath quantile of the permutation distribution given by

the Z~s. Since the significance level a used for the test is small we need a very

large number of permutations (P) for the estimation of p-value (on the order of

10,000). Considerable computational efficiency can be achieved by stopping the

permutation procedure once the number of Zý > Zc exceeds aP. Note that a is

the type I error in testing for a change in a single segment with no change-points.
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Since the procedure tests for changes recursively on all resulting sub-segments

the probability of finding spurious change-points is a function of the number true

change-points and could be larger than a. Since the true number of change-points

is unknown we do not correct for this multiple testing problem.

The permutation approach is computationally intensive. A modification is

sometimes needed for large data sets. Our solution is to divide the data into K

overlapping windows Wk, k = 1, ... , K, of (approximately) equal size and search

for change-points within each. The number of windows K depends on the window

size and the overlap. The overall test statistic is defined as ZC = maxk Zk where

Zk is the maximum statistic for the data in the windows Wk. The permutation

process is repeated as above, but with the new, faster maximization procedure.

There are two additional modifications to the basic procedure to make it more

appropriate for array DNA copy number data. The first is to smooth outliers

before segmenting. Outliers can be caused either by technical errors in an experi-

ment or by aberrant copy number in a region covering only a single marker. The

smoothing region for each i is given by i - R,,..., i, . . . , i + R, where R is a small

integer (say 2 to 5). Let mi be the median of the data in the smoothing region

and let & be the standard deviation of the entire data. If the observation Xi is

the maximum or the minimum of all the observations in the smoothing region we

find j in the smoothing region closest to it. If the distance from Xi to Xj exceeds

L& we replace Xi with mi + sign(Xi - Xj)M&. The values we use for L and M

are 4 and 2, respectively.

The second modification is because, for reasons that are not totally under-
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stood, there are local trends in the data that are not indicative of real copy

number changes. This can lead to the identification of change-points that are not

biologically meaningful. Therefore, we use a "pruning" procedure like in CART

(Breiman et al., 1984) to eliminate some of them. Suppose there are C change-

points after CBS. The sum of squared deviations of data points in segments around

their segment average can be represented by SS(C). (This is equivalent to the

error sum of square in one way ANOVA.) We then compute SS(1),... , SS(C - 1),

which are the sum of squares corresponding to the best set of change-points of sizes

1 to C - 1, choosing only among the change-points previously identified. Then

c '= min{c : [SS(c)/SS(C) - 1] < -y, where -y is some pre-specified constant

(such as 0.05 or 0.10). The change-points are those that led to SS(c').

3 Array CGH Example

We applied the CBS methodology with a permutation-based reference distri-

bution to the aCGH data featured in Snijders et al. (2001). (These data are

freely available for download at http: //www. nature. com/ng/j ournal/v29/n3/

suppinfo/ng754_Si.html.) The data consisted of single experiments on 15 fi-

broblast cell lines. Each array contained 2276 mapped BACs spotted in triplicate.

The variable used for analysis was the normalized average of the log base 2 test

over reference ratio, as processed by the authors.

There were either one or two alterations in each cell line as identified by spec-

tral karyotyping. Of these, all the alterations for six cell lines covered whole

chromosomes and thus would not be identified by our methodology. Therefore,

11



we limited our analysis to the other nine cell lines. For those lines, we tested for

change-points one chromosome at a time. As there is a multiple comparison issues

from examining 23 chromosomes, we examined our procedure with the a values

0.01 and 0.001. Results can be found in Table 1. The data from a typical cell line

experiment, specifically from cell line GM05296, can be seen in Figure 1.

Notably, both a levels lead to identification of the same regions for the chromo-

somes that were truly altered. Of the 15 altered regions, 12 were found. Of those

not found, chromosome 9 on GM03563 had only two altered points among 139,

so in the permutations it was not unlikely to find the two altered points together.

For chromosome 12 on GM01535, the region of alteration is represented by only

one point and single altered points cannot be found when using a permutation

reference. Finally, for chromosome 15 on GM07081, our result is consistent with

Snijders et al. (2001) that no evidence of an alteration is seen in the aCGH data.

Therefore, our methodology found everything that it should have.

Our methodology also found a number of changes not detected by spectral

karyotyping. We are calling these "false positives", although some may be real and

not detectable by spectral karyotyping. The number of false positive chromosomes

ranged from 0 to 8, with averages of 4.1(SD = 2.6) for a = 0.01 and 1.8(2.1) for

a = 0.001. Most of the false positives were a result of what appeared to be local

trends in the data, examples of which can be found in Figure 2, which shows the

cell line GM03563. Note that these local trends were often in the same locations

across cell lines suggesting that there may be a biological reason for them. The

segmentation procedure detects change points as it approximates the local trend
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by a step function leading to the "false positives."

4 ROMA Example

Our methods were also applied to unpublished ROMA (Lucito et al., 2003) exper-

iments on twenty three breast cancer cell lines. In this case, the labeled samples

were hybridized to a slide containing 9820 unique probes that were each 70 bases

long, with each probe spotted only once. Probes were mapped based on the draft

human genome sequence. Each cell line was hybridized twice, once with the test

sample labeled with Cy3 and the reference labeled with Cy5, and once with the

two dyes swapped. This dye-swapping negates probe-specific bias in favor of Cy3

or Cy5. The arrays were imaged using the program Genepix. To show the robust-

ness of our method, no spots were eliminated. The log base 2 test over references

intensities were normalized by subtracting off the log ratio that corresponded to

a lowess (Cleveland, 1979) fit of the log ratio to the average of the test and refer-

ence log intensities, as suggested by Yang et al. (2002). This normalization was

undertaken in each of the 16 sub-arrays of each array. The normalized log ratios

from each dye-swap were averaged before segmentation. The a level for CBS was

fixed at 0.01.

The results from applying CBS to these data are shown in Figure 3. Since we

do not have external confirmation of these results, our interpretation is necessarily

modest. We first focus on a region of chromosome 17 near 40 MB where the

ERB-B2 (HER2NEU) gene resides. The ERB-B2 gene is important because it is

amplified in 10-40% of breast cancers (Menard et al., 2000) and the drug Herceptin
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can be used to treat ERB-B2-amplified cancers. CBS found change-points in the

ERB-B2 region in 5 of the cell lines. The cell line in the seventh row and first

column of Figure 3 is particularly interesting in this region. Note that the ratios

for some of the probes in the region appear to be at the normal level, but CBS is

still able to define a likely aberrant region. In addition, CBS helps to define the

altered region in the cases where ERB-B2 is amplified.

Another noteworthy aspect of these data is that there were 8 cell lines with no

ERB-B2 alteration where there appeared to be a copy number gain or loss in a

whole arm of the chromosome. One would expect that the change-point would be

found right at the centromere. Since, in most cases, the change-points were found

3 probes after the centromere, it is likely that those three probes are mis-mapped

to the wrong side of the centromere. Thus the combination of the high-resolution

ROMA data and the CBS algorithm was helpful in identifying these likely errors

in the genome sequence.

Figure 4 shows results from the application of CBS to a whole breast cancer cell

line. It can be seen that the sorted means of segments separated into plateaus.

It is reasonable to assume that each plateau corresponds to a particular copy

number, although what that copy number is remains unclear without additional

information because the ploidy of the cell line is unknown. In addition, note the

high degree of overlap of points that are part of segments in different plateaus.

This overlap highlights the weakness of threshold-based methods.
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5 Simulations

In this section we will present the results from the Monte Carlo simulations we

conducted to evaluate the performance of the CBS algorithm. The data to be

segmented were generated from the model xi = j + E&, 1 < i < n, where n

is the sample size, p is the mean and c the error term which is distributed as

N(0, a2 ). We used a permutation reference distribution to obtain the p-value of

the segmentation procedure with values smaller than 0.01 (= a) being considered

significant.

In the first set of simulations the mean was set to be pi = cal{l < i <

1 + k}, where _T is the indicator function and the parameters c, 1 and k control

the change in the mean, the location of the change and the width of the changed

segment, respectively. For these simulations we chose the value of c from {2, 3, 4},

1 from {0, L(n - k)/2J} and k from {2,3,4,5}. The two values for 1 correspond

to the location of the changed segment being the edge and the center of the data

with the correct number of change-points being 1 in the first case and 2 in the

second. The CBS algorithm was designed to overcome a shortcoming of binary

segmentation which is that it cannot detect a narrow changed segment buried in

the middle of a wide segment. Hence in this set of simulations we ran both the

procedures to compare their performance. The number of change-points detected

from segmenting 1000 simulated data sets are summarized in Table 2.

The simulations show that the estimated number of changes exceeded the

true number a maximum of 3% of the times (median: 1.75%; range: 0% - 3%).

Even though it exceeds 1%, the excess is reasonable and is consistent with the
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multiple testing issue discussed in Section 2. The segmentation procedures have

low power to detect a change when the difference in means is small or if the

width of the changed segment is small. The proportion of data sets in which the

estimated number of change-points equals the true number increases as either c or

k increases, except when the binary segmentation procedure was used to detect a

changed segment in the middle. The simulation results are a clear demonstration

of the inability of the binary segmentation to find a narrow aberrant region in

the middle of a chromosome; no change was detected in over 99% of the data sets

with the changed segment in the middle. The CBS procedure gains this ability

by trading some of its power to detect a changed segment on the edge. Note

that the power of both procedures increases more rapidly when the difference in

means c increases than when the width k of the segment increases since change

in c is equivalent to a change in the square root of k. Finally the exact changed

segment is more easily identified when the difference in the means increases than

when the width of the segment increases. The exact estimation requires that the

test statistic (Zij for CBS and Zi for binary segmentation) is maximized when the

segment edges are the true change-points. This happens when the segments are

clearly separated, which is likely only when the two means are far apart.

A second set of simulations were performed with data sets simulated based on

the CBS fit to Chromosome 11 of a real ROMA breast cancer experiment. There

were 497 markers in Chromosome 11 with six change-points estimated at 137, 224,

241, 298, 307, 331 and the average log-ratios of intensities within segments given
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by:

i 1 - 137 138- 224 225 - 241 242- 298 299- 307 308- 331 332- 497

f(i) -0.18 0.08 1.07 -0.53 0.16 -0.69 -0.16

As earlier the data were generated using the model xi = /i + E, where pL is

the mean and c the error distributed as N(O, a 2). In these simulations a local

trend component was incorporated into the mean in order to study its effect

on segmentation giving the mean to be pi = f(i) + 0.25a sin(c-xi). The noise

parameter o was set to be one of 0.1 or 0.2, and the trend parameter c was set to

be one of 0, 0.01 or 0.025 corresponding to no trend and local trends with long

and short periods respectively. Figure 5 shows typical data sets constructed by

this model. The CBS algorithm was used to detect change-points in the simulated

data using a permutation reference distribution with a p-value cutoff of 0.01. The

change-point search was undertaken either over all data points or over overlapping

windows of size 100 that had 75% overlap. The change-points detected thus were

pruned using a sum of squares threshold -/ of 0.05. In addition to the number

of change-points detected the following distance measure was used to assess the

accuracy of the procedure. Let v1 < ... < ik be the true change-points and

&1 < ... < 4k be the estimated change-points where k is the number of change-

points detected. The distance measure D is defined as maxl<i<k Ivi - kj for a

data set with true number of changes (i.e. k = k) and undefined otherwise. The

number of change-points detected and the median and range of D are shown in

Table 3 for the unpruned procedure and Table 4 for the pruned procedure. These

results are based on 100 replicate simulations.

Table 3 shows that unpruned CBS found the correct number of change-points
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in at least 52% of the simulations with false positive detection more likely. The

number of false positives appear to be nominal when there is no trend in the mean

function and the longer the period of the local trend the larger the number of false

positives. This is the expected behaviour since the longer the period of local trend

the easier it is to approximate it by a non-constant step function. Larger noise in

the data makes it more difficult to detect a change-point and estimate its location

correctly. This can be seen in the numbers of change-points and the median

and range of D used to assess the accuracy of the procedure. The windowing

scheme was devised to ease the computational burden which grows as a square of

the sample size. Windowing appeared to have little impact when the noise was

low, but it led to a change-point being missed occasionally when noise was high.

Similarly there is a small drop in the accuracy of the estimated locations of the

change-points as seen in the medians and ranges of D. Thus the computational

gains from windowing appears to come at the cost of a small drop in the accuracy

of the procedure.

Table 4 shows that pruning greatly improves the accuracy of the procedure by

substantially reducing the false positives caused by the local trends in the data.

This can be seen in the larger number of times the correct number of changes

are estimated with minimal detrimental effect on D. Pruning also occassionally

removes a false positive change with the correct number of change-points leading

to the appearance of a missed change-point. Overall, these simulations show that

the CBS procedure with pruning is a desirable method to analyze copy number

data.

18



6 Discussion

We have developed a variant of binary segmentation that we call circular binary

segmentation or CBS for identifying genomic alterations in array copy number

experiments. We applied our procedure to copy number data from aCGH exper-

iments on 15 fibroblast cell lines. The CBS algorithm identified all the expected

alterations detected through spectral karyotyping of the cell lines. We also applied

our procedure to ROMA data from 23 breast cancer cell lines. While there is no

biological verification for all the changes detected, the procedure found alterations

in the ERB-B2 region of Chromosome 17 in 5 of the 23 cases which is consistent

with the known rate of abnormality in breast cancer in this region. Finally we

showed through a series of simulations that the procedure performs well in iden-

tifying changes and estimating their locations, especially when detecting narrow

regions of change of the square wave type.

Even though the step-function model is appropriate for copy number data,

we have seen fluctuations in the log intensity ratio that are not due to copy

number changes. We call these local trends since these fluctuations exhibit a

similar pattern across cell line case and believe that they may have a biological

reason. These local trends can lead to false positive detection of change-points.

We developed a pruning component to our procedure to address this problem

and showed through simulations that it achieves its goal of removing most false-

positive change-points. We are currently exploring methods to estimate local

trends from data across cell lines so that it would be possible to subtract out local

treinds before segmenting.
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The number of computations needed to obtain the test statistic used in CBS

is a function of the square of the sample size. Since our test procedure is based

on a permutation reference distribution, these computations must be repeated

thousands of times to accurately estimate the upper tail probability of the ref-

erence distribution. We have developed a windowing method that reduces this

computational burden. We showed here through simulations that it has minimal

effect on the accuracy of the procedure and have applied it to data from arrays

that contained 85, 000 markers (Lucito et al., 2003). We are devising additional

methods to further speed up the computations in order to analyze even larger

data sets.

Once the change-points have been estimated it is of interest to estimate the

copy numbers of the test sample in every region. One possibility that operates

on the output of the CBS procedure is presented in Lucito et al. (2003). As

demonstrated in Figure 4, the CBS procedure segments array copy number data

into regions whose means are consistent across chromosomes. These plateaus in

the plot of the segment means reflect different copy number states in the test

sample. It is not possible to know the true copy numbers in each of these states

without additional data acquired using another technique.

The software used in this paper was written in R and Fortran and is freely

available at http://www.mskcc.org/biostat/-olshena/research/.

7 References

20



1. AUTIO, R., HAUTANIEMI, S., KAURANIEMI, P., YLI-HARAJA, 0., As-

TOLA, J., WOLF, M. AND KALIONIEMI, A. (2003). CGH-Plotter: MATLAB

toolbox fo CGH-data analysis. Bioinformatics 19 1714-1715.

2. BASSEVILLE, M. (1988). Detecting changes in signals and systems - a survey.

Automatica 24 309-326.

3. BENJAMINI, Y. AND HOCHBERG, Y. (1995). Controlling the false discovery

rate: a practical and powerful approach to multiple testing. Journal of the

Royal Statistical Society, Series B 57 289-300.

4. BREIMAN, L., FRIEDMAN, J, OLSHEN, R. AND STONE, C. (1984). Classi-

fication and Regression Trees. Wadsworth.

5. CLEVELAND, W. S. (1979). Robust locally weighted regression and smooth-

ing scatterplots. Journal of the American Statistical Association 74 829-836.

6. HODGSON, G., HAGER, J.H., VOLIK, S., HARIONO, S., WERNICK, M.,

MOORE, D., NOWAK, N., ALBERTSON, D.G., PINKEL D., COLLINS, C.,

HANAHAN, D. AND GRAY J.W. (2001). Genome scanning with array CGH

delineates regional alterations in mouse islet carcinomas. Nature Genetics 29

459-464.

7. KALLIONIEMI, A., KALLIONIEMI, O-P, SUDAR, D., RUTOVITZ, D., GRAY,

J.W., WALDMAN, F. AND PINKEL D. (1992). Comparative genomic hy-

bridization for molecular cytogenetic analysis of solid tumors. Science 258

818-821.

8. LEVIN, B. AND KLINE, J. (1985). The CUSUM test of homogeneity with

an application in spontaneous abortion epidemiology. Statistics in Medicine

21



4 469-488.

9. LINN, S.C., WEST, R.B., POLLACK, J.R., ZHU, S., HERNANDEZ-BOUSSARD,

T., NIELSEN, T.O., RUBIN, B.P., PATEL, R., GOLDBLUM, J.R., SIEG-

MUND, D., BOTSTEIN, D., BROWN, P.O., GILKS, C.B., AND VAN DE

RIJN, M. (2003) Gene expression patterns and gene copy number changes in

dermatofibrosarcoma protuberans. American Journal of Pathology 163 2383-

95.

10. LIsITSYN, N., LISITSYN, N. AND WIGLER, M. (1993). Cloning the differ-

ences between two complex genomes. Science 259 946-951.

11. LUCITO, R., HEALY, J., ALEXANDER, J., REINER, A., ESPOSITO D,

CHI, M., RODGERS, L., BRADY, A., SEBAT, J., TROGE, J., WEST,

J.A., ROSTAN, S., NGUYEN, K.C., POWERS, S., YE, K.Q., OLSHEN,

A., VENKATRAMAN, E., NORTON, L. AND WIGLER, M. (2003). Repre-

sentational oligonucleotide microarray analysis: a high-resolution method to

detect genome copy number variation. Genome Research 13 2291-2305.

12. LUCITO, R., WEST, J., REINER, A., ALEXANDER, D., ESPOSITO, D.,

MISHRA, B., POWERS, S., NORTON, L. AND WIGLER, M. (2000). Detect-

ing gene copy number fluctuations in tumor cells by microarray analysis of

genomic representations. Genome Research 10 1726-36.

13. MENARD, S., TAGLIABUE, E., CAMPIGLIO, M. AND PUPA, S.M. (2002).

Role of HER2 gene overexpression in breast carcinoma. Journal of Cellular

Physiology 182 150-162.

22



14. PINKEL, D., SEAGRAVES, R., SUDAR, D., CLARK, S., POOLE, I., Kow-

BEL, D., COLLINS, C., Kuo, W-L, CHEN, C., ZHAI, Y., ZHAI, Y, DAIR-

KEE, S., LJJUNG, B-M, GRAY, J.W. AND ALBERTSON, D. (1998). High

resolution analysis of DNA copy number variation using comparative genomic

hybridization to microarrays. Nature Genetics 20 207-211.

15. POLLACK, J.R., PEROU, C.M., ALIZADEH, A.A., EISEN, M.B., PERGA-

MENSCHIKOV, A., WILLIAMS, C.F., JEFFREY, S.S., BOTSTEIN, D. and

BROWN, P.O. (1999). Genome-wide analysis of DNA copy-number changes

using cDNA microarrays. Nature Genetics 23 41-46.

16. POLLACK, J.R., SORLIE, T., PEROU, C.M., REES, C.A., JEFFREY, S.S.,

LONNING, P.E., TIBSHIRANI, R., BOTSTEIN, D., BORRESEN-DALE, A.L.

AND BROWN P.O. (2002). Microarray analysis reveals a major direct role of

DNA copy number alteration in the transcriptional program of human breast

tumors Proceedings of the National Academy of Sciences USA 99 12963-12968.

17. SEN, A. AND SRIVASTAVA, M. S. (1975). On tests for detecting a change in

mean. Annals of Statistics 3 98-108.

18. SHABAN, S. A. (1980). Change-point problem and two phase regression: an

annotated bibliography. International Statistical Review 48 83-93.

19. SIEGMUND, D. (1986). Boundary crossing probabilities and statistical appli-

cations. Annals of Statistics 14 361-404.

20. SNIJDERS, A. M., FRIDLYAND, J., MANS, D. A., SEGRAVES, R., JAIN,

A.N., PINKEL, D., AND ALBERSTON D.G. (2003). Shaping of tumor and

drug-resistant genomes by instability and selection. Oncogene 22 4370-4379.

23



21. SNIJDERS, A. M., NOWAK, N., SEGRAVES, R., BLACKWOOD, S., BROWN,

N., CONROY, J., HAMILTON, G., HINDLE, A.K., HUEY, B., KIMURA,

K., LAW, S., MYAMBO, K., PALMER, J., YLSTRA, B., YUE, J.P., GRAY,

J.W., JAIN, A.N., PINKEL, D. AND ALBERSTON D.G. (2001). Assembly

of microarrays for genome-wide measurement of DNA copy number. Nature

Genetics 29 263-264.

22. VENKATRAMAN, E. S. (1992). Consistency results in multiple change-point

situations. Technical report, Dept. of Statistics, Stanford Univ.

23. VOSTRIKOVA, L. J. (1981). Detecting "disorder" in multidimensional random

processes. Soviet Mathematics Doklady 24 55-59.

24. YANG, Y.H., DUDOIT, S., Luu, P., LIN. D., PENG, V., NGAI, J. AND

SPEED, T.P. (2002). Normalization for cDNA microarray data: a robust

composite method addressing single and multiple slide systematic variation.

Nucleic Acids Research 30(4):e15.

25. WEISS, M.M., SNIJDERS, A.M., KUIPERS, E.J., YLSTRA, B., PINKEL,

D., MEUWISSEN, S.G.M., VAN DIEST, P.J., ALBERTSON, D.G. AND MEI-

JER, G.A. (2003). Determination of amplicon boundaries at 20q13.2 in tis-

sue samples of human gastric adenocarcinomas by high-resolution microarray

comparative genomic hybridization. The Journal of Pathology 200 320-326.

26. YAO, Y-C. (1988) Estimating the number of change-points via Schwarz' Cri-

terion. Statistics and Probability Letters. 6 181-189.

24



Chromosome 1 Chromosome 4
o. _

0 2'0 40 60 80 1 00 120' 0"0105

oI 0

0 lO0

Position Position

Chromosome 10 Chromosome 11

U) r- i)

020 40 60 80 100 120 0 50 100 150lO00

Position Position

Figure 1: A CBS analysis of the fibroblast cell line GM05296 which has known

alterations on chromosomes 10 and 11. The points are normalized log ratios, and

the lines are the mean values among points in a segment. The red and dark green

lines represent regions defined by CBS for chromosomes with and without known

alterations, respectively.
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Figure 2: A CBS analysis of the fibroblast cell line GM03563 which has known

alterations on chromosomes 3 and 9. The red and dark green lines represent

regions defined by CBS with and without known alterations, respectively. Note that

change-points found on chromosome 1 and chromosome 11 appear to be because

of local trends in the data.
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Figure 4: A CBS analysis of a whole breast cancer cell line. The left panel shows

markers arranged by chromosome, while the right shows the markers sorted by the

mean of the corresponding segment. The red points are the actual normalized log

ratios, while the black lines are the segment means. Each plateau in the segment

means implies a different copy number in the test sample.
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Cell Line/Chrom. a = 0.01 a = 0.001
CM03563/3 Yes Yes

CM03563/9 No No
GM03563/False 8 5
CM05296/10 Yes Yes
GM05296/11 Yes Yes
GM05296/False 3 0
CM01750/9 Yes Yes
GM01750/14 Yes Yes
GM01750/False 1 0
CM03134/8 Yes Yes
CM03134/False 3 1
CM13330/1 Yes Yes
GM13330/4 Yes Yes
GM13330/False 8 5
CM01535/5 Yes Yes
GM01535/12 No No
CM01535/False 2 0
GM07081/7 Yes Yes
GM07081/15 No* No*
GM07081/False 1 0
GM13031/17 Yes Yes
GM13031/False 5 3
CM01524/6 Yes Yes
GM01524/False 6 2

Table 1: Results from applying CBS to nine cell lines with known copy number
alterations. "Yes" means the alteration was found for the particular cell line
and chromosome at the given a level, while "No" means that it was not. For
GM07081115, the asterisk is because there was no evidence in the array data
of an alteration. "False" is the number of chromosomes for the cell line where
change-points were found that do not have known alterations.
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Change-points (edge) Change-points (center)

k c 0 1 2 3-4 #Exact 0 1 2 3-4 # Exact

2 980 11 8 1 5 968 0 32 0 9
762 238 0 0 170 990 10 0 0 0

2 3 832 159 4 5 128 821 0 175 4 174
297 699 4 0 607 992 8 0 0 0

4 430 556 5 9 518 405 0 583 12 516

34 957 9 0 900 995 5 0 0 0

2 874 115 7 4 81 857 0 141 2 79
539 458 3 0 294 992 8 0 0 0

3 3 348 635 8 9 538 330 0 654 16 496
76 914 10 0 754 994 6 0 0 0

4 35 r947 2 16 891 23 0 954 23 847

1 989 10 0 925 995 5 0 0 0

2 720 261 15 4 192 689 0 307 4 159
334 662 4 0 439 992 8 0 0 0

4 3 115 863 10 12 716 97 0 883 20 648
12 979 9 0 802 994 5 1 0 0

4 3 977 5 15 918 0 0 978 22 867
0 990 10 0 931 996 3 1 0 0

2 531 439 23 7 297 511 0 481 8 232
192 801 7 0 516 991 7 2 0 0

5 3 24 954 6 15 818 19 0 961 20 *692

1 988 11 0 842 994 5 1 0 0

4 0 982 4 14 937 0 0 981 19 877
0 989 11 0 943 997 1 1 1 1

Table 2: Counts of the number of change-points observed when applying CBS and

binary segmentation to 1000 data sets of 250 points simulated from the Gaussian
distribution. The columns under the heading "Exact" provide the number of cases
in which the exact number (1 for edge and 2 for center) and locations of the change-

points are observed. Here k is the width of the changed segment and c is the number
of standard deviations between the two means. The large font corresponds to the

CBS results and the small font corresponds to the binary segmentation result.
Each data set had one elevated region ranging from 2 - 5 points, and the elevated
region varied from, 2 - 4 SDs above the mean. The elevated region was all the way
to one edge of the data set or at the exact center of the data set. The a for the
simulation was 0.01.
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Number of Change-points Max. Distance

a Window Trend 5 6 7 8 9 10 11 Median Range

0.1 No None 0 96 1 2 1 0 0 0 0-4

0.1 Yes None 0 92 5 3 0 0 0 0 0-5
0.2 No None 0 91 6 2 1 0 0 1 0-11
0.2 Yes None 9 78 10 3 0 0 0 1 0-28

0.1 No Short 0 82 5 10 2 1 0 0 0-6
0.1 Yes Short 0 73 8 15 2 2 0 0 0-6
0.2 No Short 0 66 23 8 3 0 0 1 0-23
0.2 Yes Short 7 58 17 11 4 3 0 2 0-28

0.1 No Long 0 71 7 18 4 0 0 0 0-5
0.1 Yes Long 0 75 12 9 2 2 0 0 0-6

0.2 No Long 0 68 11 17 2 1 1 1 0-28
0.2 Yes Long 18 52 20 6 2 2 0 2 0-46

Table 3: Counts of the number of change-points observed when applying CBS to
data simulated from the step-function f from Section 5. If "Window" is "No",
a search over all points was undertaken to find the best change-point. If "Win-
dow" is "Yes", the search was only over overlapping window (window size=100;
overlap=75%). If "Trend" is "Long", c = 0.01. If Trend is "Short", c = 0.025.
The true number of change-points was six. Distances are the maximums of the
minimum distances from the ith observed change-point to the ith true change-
point in every simulation. The median and range was then computed over 100

simulations.
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Number of Change-points Max. Distance

a Window Trend 5 6 7 8 9 10 11 Median Range

0.1 No None 0 99 1 0 0 0 0 0 0-4
0.1 Yes None 0 100 0 0 0 0 0 0 0-5

0.2 No None 0 99 1 0 0 0 0 1 0-11
0.2 Yes None 9 91 0 0 0 0 0 1 0-28

0.1 No Short 0 94 5 1 0 0 0 0 0-6

0.1 Yes Short 0 94 4 2 0 0 0 0 0-6

0.2 No Short 0 95 5 0 0 0 0 1 0-23
0.2 Yes Short 8 84 6 2 0 0 0 1 0-31

0.1 No Long 0 91 9 0 0 0 0 0 0-5
0.1 Yes Long 0 94 4 1 1 0 0 0 0-6

0.2 No Long 0 90 8 1 1 0 0 2 0-40
0.2 Yes Long 20 75 4 1 0 0 0 1 0-46

Table 4: Same as Table 3, except that the change-points have been pruned.
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saccharide (32-34). Access to synthetic com- The extent to which large duplications and deletions contribute to human genetic
plex carbohydrate-based vaccines is therefore variation and diversity is unknown. Here, we show that large-scale copy number
feasible and provides an altemative strategy in polymorphisms (CNPs) (about 100 kilobases and greater) contribute substantially
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individuals. ROMA measures the relative cations. Figure 2 presents array data and flu- some unique CNPs were identified, bringing
concentration of DNA in two samples by orescence in situ hybridization (FISH) con- the total of copy number differences identi-
hybridizing differentially labeled samples to firmation for CNPs 15, 21, 32, and 56, which fled in this study to 221 and the total of
a set of probes. Briefly, the complexity of the encompass the full length of genes RAB6C, unique CNPs to 76.
samples is reduced by making Bgl II genomic NT_016297.17, DUSP22, and PPYR1, re- Our study population consisted of 20 in-
representations, consisting of small (200 to spectively. By interphase FISH, we con- dividuals from a variety of geographic back-
1200 base pair) Bgl II restriction fragments firmed a deletion of RAB6C (Fig. 2B), a grounds. These results provide an indication
amplified by adaptor-mediated polymerase duplication of PPYR1 (Fig. 2D), and a dele- of the extent of human copy number variation
chain reaction of genomic DNA (6). Oligo- tion of NT_016297.17 (Fig. 2F). By meta- and the frequency of the most common al-
nucleotide microarray probes are designed in phase FISH, CNP32 was determined to in- leles. In all experiments, there were a total of
silico from the human genome sequence as- volve an interchromosomal duplication of a 221 observed copy number differences (not
sembly to be complementary with these frag- region containing the DUSP22 gene on 6p25 including somatic differences) comprising a
ments and are further optimized by perfor- and l6pl 1.2 (Fig. 2, G, H, and I). FISH nonredundant set of at least 76 CNPs (Fig. 1
mance (7). Microarrays are used to analyze results were inconclusive for CNPs 68, 69, and table S2). There was an average of 11
genomic representations of unrelated individ- and 73. In these cases, FISH signals were too CNPs between two individuals, with an av-
uals. Hybridization data are analyzed with a numerous, and a consensus copy number erage length of 465 kb and a median length of
hidden Markov model (HMM) that is de- could not be reached. CNPs 68 and 69 were 222 kb. At least five of these polymorphisms
signed to distinguish differences between the validated by other means (table S2); thus, 11 have been described previously (9-13). The
DNA copy number and other variation in of 12 CNPs were validated by one of two overwhelming majority of CNPs were previ-
probe ratios, which can result from experi- methods, which is consistent with a false ously unidentified. About half of the above
mental noise or sequence polymorphisms at positive rate of about 10%. CNPs were recurrent in multiple individuals.
the restriction endonuclease sites used to Additional validation of CNPs was ob- The CNPs observed here represent only a
make the representations (8). tained by microarray analysis of genomic subset of the total CNPs in the population.

Observed differences in the copy number representations made with a different restric- For example, some CNPs that have previous-
of genome segments between samples from tion enzyme. A pair of individuals analyzed ly been reported were not observed in this
two individuals could reflect germline differ- by Bgl II-ROMA (experiment JA437, table study (14, 15). Undoubtedly, an increase in
ences or somatic variation. Therefore, we SI) was also analyzed with Hind III repre- the size of our study population would reveal
sampled multiple tissues and Epstein-Barr sentations and arrays of Hind III probes additional CNPs, as would an increase in the
virus-immortalized lymphoblastoid cell lines (JT393). The results of Bgl II-ROMA and density of probe coverage. By comparing
(LCLs) from a subset of the donors in this Hind III-ROMA were generally in agreement Hind III and Bgl II results and analyzing Bgl
study (8), and by comparing the variants de- (8). In addition, because of differences in the II results with replicate samples, we estimate
tected in the same donor, we determined that genomic distribution of Hind III probes, that in any given experiment we may miss up
somatic mutations occurring in whole blood
and LCLs were located exclusively within
gene clusters encoding T cell receptors or 1 .

immunoglobulins (fig. SI and table S2), 2.

which most likely reflects normal V(D)J-type 3-
recombination of T cells and B cells, respec- 4- D

tively. Therefore, the use of blood and LCLs 6- . ..
as sources of genetic material for this study 7- -

was not problematic. 8-
In experiments with Bgl II representa- 9-

tions, we identified 210 differences in 20 0 10-_ _,_

donors (excluding somatic differences, Fig. 0 12-
1). For the sake of simplicity, overlapping o 13-
CNPs from different experiments were as- 2 14- A__________

sumed to represent the same polymorphism 6 15-
even if they did not overlap perfectly. Based 16- Recren
on these criteria, we identified a nonredun- 17- Recurrent

dant set of 71 CNPs (table S1). 18- Observed once

Nine of twelve CNPs were unambiguous- 20-
ly confirmed by cytogenetic analysis (Fig. 2 21- BIC E3 Centromeric gap

and fig. S2). Five CNPs were found to be 22- Be

hemizygous deletions, and four were dupli- X-
Y-

'Cold Spring Harbor Laboratory, Cold Spring Harbor, 0 500(0000 1000'0000 150060000 200060000
NY 11724, USA. 2Division of Human Biology, Fred Chromosome position (base pairs)
Hutchinson Cancer Research Center, Seattle, WA
98109, USA. 3Karolinska Institute, Stockholm Fig. 1. Genome-wide map of CNPs identified by ROMA. The position of all CNPs (excluding somatic
SE-17176, Sweden. 4Department of Applied Mathe- differences) is shown. CNPs identified in multiple individuals (by Bgl II-ROMA) are indicated in
matics and Statistics, Stony Brook University, Stony yellow, and CNPs observed in only one individual are indicated in red. Additional CNPs identified
Brook, NY 11794, USA. 'Columbia Genome Center, by one Hind III-ROMA experiment are indicated in blue. Symbols denoting CNPs are not drawn to
Columbia University, New York, NY 10032, USA. scale. Genome assembly gaps in pericentromeric and satellite regions are indicated by gray boxes.
6Broad Institute, Cambridge, MA 02139, USA. Genomic regions where recurring de novo rearrangements cause the developmental disorders
*To whom correspondence should be addressed. E- Prader-Willi and Angelman syndromes, cat eye syndrome, DiGeorge/velocardiofacial syndrome,

mail: wigler@cshl.edu and spinal muscular atrophy are labeled A, B, C, and D, respectively.
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to 30% of the large-scale copy number types of chromosomal rearrangements. Some CNPs are probably manifestations of the
changes that we ought to find (table S3). In CNPs occurred within genomic regions where same underlying process. Just as chromosom-
addition, there are theoretical limits to the recurring de novo rearrangements are causes of al rearrangements have played a significant
detection of CNPs with only 85,000 probes. developmental disorders, specifically, Prader- role in primate evolution and human disease,
Based on Poisson distributions of probes and Willi and Angelman syndromes, cat eye syn- structural polymorphisms may play an anal-
the probabilities of detecting CNPs of given drome, DiGeorge/velocardiofacial syndrome, ogous role in determining genetic diversity
lengths, we estimate that there are 226 non- and spinal muscular atrophy (labeled A, B, C, within the human population.
redundant CNPs in our study population cov- and D, respectively, in Fig. 1). These CNPs are We observed copy number variation of 70
ering 44 Mb of the genome (table S4). not directly implicated in the above diseases, genes (table S5). Variation in the dosage of

CNPs were widely distributed through- but they may reflect the instability of these individual genes can lead to a profound pheno-
out the genome. Some locations such as genomic regions. A preliminary analysis of the type; for instance, the familial inheritance of
6cen, 8pter, and 15q13-14 contained clus- duplication content of CNPs determined that gene copy number variants is a cause of some
ters of three to four CNPs, which may be 30% of the sequence within intervals of poly- neurological disorders (19,20). Notably, one of
evidence that these regions are "hotspots" morphic deletions consists of segmental dupli- the donors in this study was determined to carry
of copy number variation. We observed no cations, a sixfold enrichment relative to the a deletion of COHI (CNP48), a gene whose
CNPs on the X chromosome. This may be genome average. As would be expected, a inactivation causes the autosomal recessive dis-
due to the underrepresentation of females greater enrichment (12-fold) was observed for ease Cohen syndrome (21). Several additional
in our study population (16 donors and polymorphic duplications (16). The former is CNPs contained genes involved in neurodevel-
SKN1 were male). A larger study would be consistent with previous observations of a pos- opment, such as GTF2H2, ATOH1, CASPR3,
necessary to determine if selective pressure itive correlation between segmental duplica- CHRFAM7A, and NCAM2. Other compelling
against copy number variation is greater on tions and microdeletions (17, 18). A more thor- examples from table S5 include the Enhancer of
the X chromosome than on autosomes, or if ough characterization of CNP junctions at the Split (TLE1) and RAB6C, which are implicated
it is especially apparent in the X chromo- sequence level is necessary to determine a in leukemia and drug resistance in breast can-
somes present in males, causal relationship between the two. Fixed cer, respectively (22, 23). Lastly, some CNPs

CNPs were frequently located near other segmental duplications, unstable regions, and identified in this study involve genes with a
known influence on "normal" human pheno-
types. For example, we observed triplication

SA 2 G of the neuropeptide-Y4 receptor (PPYR1,

2 Fig. 2, C and D), a gene that is directly
involved in the regulation of food intake

*1o0,0 Jand body weight (24). Thus, a relationship
100.0 89 between CNPs and susceptibility to health

1 6 problems such as neurological disease, can-7 6 CNP: 32

6 CNP: 15 Gene: DUSP22 cer, and obesity is an intriguing possibility.
Experiment JA440Gene:__BC Owing to their size and gene content,
Experiment: JA440 30;26M $105 31355

10870 10§20 10970 11020 6•nmeeorder CNPs are unlikely to be selectively neutral.
Indeed, a large proportion of CNPs observed

2 in this study are rare (i.e., they occur once in

20 donors). A preliminary analysis of the
o - comparative frequency of variants (25) sug-

10.0 1 gests that CNP as a class is under negative
7 selection. However, more data are required to

CNP:56 reach this conclusion with confidence.
5 Gene: PPYR1 As evident by ROMA, there is consider-

Expedmon,: JT259 able structural variation in the human ge-
48410 48460 48510 48560 nome, most of which was not previously

2 E apparent by other methods of genomic anal-
ysis. Previous studies using array compara-
tive genomic hybridization have identified a

10. i•rhandful of large-scale polymorphisms (26,
9 27). For example, by using a 1-Mb-resolution
8bacterial artificial chromosome (BAC array,
6 GcNP:2N Shaw-Smith et al. detected five inherited
5 Gene: NT016297.17

Exeet:JA437 CNPs from a set of 50 patients with devel-
21420 21470 21520 21570 opmental disabilities (27). The ROMA chips

Genome order

FRi. 2. Validation of ROMA results by FISH. (A), (C), (E), and used here have a resolution of approximately
(G)" show CNPs identified by ROMA and include the CNP one probe every 35 kb, which accounts for
identification number, the name of one gene located entirely much of the enhanced sensitivity of our meth-
within the interval, and the experiment name. (B), (D), (F), (H), od. Furthermore, by designing oligonucle-
and (I) show cytogenetic analyses of one or both individuals otide probes that are free of repetitive se-
with probes that target the same CNP intervals. In all panels, quence, by empirically selecting 85,000
the polymorphic probe is labeled red. In interphase cells [(B), (D), and (F)], a control probe (labeled quones by mpircl sing 85,000
green) was also included to confirm that cells were diploid. (B) CNP15 probe in GM11322 cells; (D) probes that yield maximum signal, and by
CNP56 probe in GM10470 cells; (F) CNP21 probe in GM10470 cells; (H) CNP32 probe in GM10540 reducing the complexity of the genome,
cells; (I) CNP32 probe in SKN1 cells. In (I), one parental copy of chromosome 16 in SKN1 lacks the ROMA achieves a ratio of signal-to-
duplication (arrow). background superior to that which can be
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Integrase Inhibitors and Cellular In this investigation we used a novel strand-
transfer inhibitor, L-870812 (12) (Fig. 1), which
exhibits potent antiviral activity in vitro against
both HIV-1 and the simian lentivirus, SIV [95%
inhibition concentration (IC 9 5) of 250 and 350

Replication in Rhesus Macaques nM, respectively, in 50% human and rhesus
serum] and favorable pharmacokinetics in rhe-

Daria J. Hazuda,* Steven D. Young,2* James P. Guare, 2  sus macaques [oral bioavailability = 64% and

Neville J. Anthony,2 Robert P. Gomez,' John S. Wai,2  half-time (t,12 ) = 5 hours] to assess the efficacy

Joseph P. Vacca,2 Larry Handt,3 Sherri L. Motzel,3  of such inhibitors in vivo. The studies were

Hilton J. Klein,3 Geethanjali Dornadula,1 Robert M. Danovich,' designed to evaluate integrase inhibitors as
a new class of antiretroviral agents and to

Marc V. Witmer,1 Keith A. A. Wilson, 4 Lynda Tussey, 4  examine the role of viral-specific cellular
William A. Schleif, 4 tori S. Gabryelski,4 Lixia Jin,s immunity in chemotherapeutic intervention

Michael D. Miller,1 Danilo R. Casimiro,4 Emilio A. Emini,4  using SHIV 89.6P-infected rhesus ma-
John W. Shiver4  caques as an experimental model of early-

and late-stage retroviral infection.
We describe the efficacy of L-870812, an inhibitor of HIV-1 and SlY integrase, Rhesus macaques infected with SH1V 89.6P
in rhesus macaques infected with the simian-human immunodeficiency virus exhibit an atypical, accelerated disease marked
(SHIV) 89.6P. When initiated before CD4 cell depletion, L-870812 therapy by a profound depletion of CD4 cells concom-
mediated a sustained suppression of viremia, preserving CD4 levels and per- itant with progression from acute viremia to a
mitting the induction of virus-specific cellular immunity. L-870812 was also chronic phase at about 2 weeks after infection
active in chronic infection; however, the magnitude and durability of the effect
varied in conjunction with the pretreatment immune response and viral load. CH3
These studies demonstrate integrase inhibitor activity in vivo and suggest that I
cellular immunity facilitates chemotherapeutic efficacy in retroviral infections. 0 N.c.

The substantial incidence of resistance ob- rability of available therapies. All oral agents H3C,.NI•.O
served in therapy-experienced patients and licensed to treat HIV-1 disease target two of the N 0
newly acquired HIV-1 infections (1-5) under- three essential, vitally encoded enzymes, re- F',,.: N N

scores the need for new antiretroviral agents, as verse transcriptase and protease (6-8). The third N
well as the importance of maximizing the du- HIV-1 enzyme, integrase, inserts the viral DNA N Z '

into the cellular genome through a multistep N
1Department of Biological Chemistry, 2Department of process that includes two catalytic reactions: 3' 0 OH
Medicinal Chemistry, 'Department of Laboratory An- endonucleolytic processing of the viral DNA
imal Research, 'Department of Vaccine Research, ends and strand transfer or joining of the viral L-870812
'Drug Metabolism and Pharmaceutical Research,
Merck Research Laboratories, Post Office Box 4, West and cellular DNAs (9, 10). Compounds that Fig. 1. The structure of L-870812, a napthyri-
Point, PA 19486, USA. selectively inhibit strand transfer have provided dine carboxamide that inhibits the strand-
*To whom correspondence should be addressed. E-mail: proof of concept for integrase as a chemother- transfer activity of recombinant HIV and SlV
steve.young@merck.com, daria_hazuda@merck.com apeutic target for HIV-1 infection in vitro (11). integrase in vitro (IC0o = 40 nM).
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APPENDIX 5

A versatile statistical analysis algorithm to detect
genome copy number variation
Raoul-Sam Daruwalat*, Archisman Rudrat*, Harry Ostrer§, Robert Lucitol, Michael Wigler1 , and Bud Mishrat¶Ih

41 tCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012; 5
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Road, Cold Spring Harbor, NY 11724; and §Human Genetics Program, New York University School of Medicine, New York, NY 10012

P Communicated by Jacob T. Schwartz, New York University, New York, NY, September 30, 2004 (received for review April 10, 2004)

We have developed a versatile statistical analysis algorithm for the when the cancer genome is sampled, this oligonucleotide will
detection of genomic aberrations in human cancer cell lines. The occur with a probability that is c/2 times that in the regular
algorithm analyzes genomic data obtained from a variety of array genome. The copy number can be computed by a ratiometric
technologies, such as oligonucleotide array, bacterial artificial measurement of the abundance of an oligonucleotide in a cancer
chromosome array, or array-based comparative genomic hybrid- sample measured against that in the regular genome. This
ization, that operate by hybridizing with genomic material ob- technique can be generalized to measure the copy number
tained from cancer and normal cells and allow detection of regions variations for many probes simultaneously with high-throughput
of the genome with altered copy number. The number of probes microarray experiments. Even though the ratiometric measure-
(i.e., resolution), the amount of uncharacterized noise per probe, ments used and the associated regularizations tame the multi-
and the severity of chromosomal aberrations per chromosomal plicative noises in the system to some extent, there remains a
region may vary with the underlying technology, biological sam- large amount of uncharacterized noise (generally additive) that
pie, and sample preparation. Constrained by these uncertainties, can render the data worthless unless a proper data-analysis
our algorithm aims at robustness by using a priorless maximum algorithm is applied. Because the data may come from multiple
a posteriori estimator and at efficiency by a dynamic programming sources collected with varying protocols, such an algorithm mustimplementation. We illustrate these characteristics of our algo- be general and be based on a minimal set of prior assumptions
rithm by applying it to data obtained from representational oil- about the methods. The algorithm we describe below reflects
gonucleotide microarray analysis and array-based comparative these desiderata.
genomic hybridization technology as well as to synthetic data Our Bayesian approach constructs a most plausible hypothesis
obtained from an artificial model whose properties can be varied concerning regional changes and the corresponding associated
computationally. The algorithm can combine data from multiple copy number. It can be viewed as an optimization process
sources and thus facilitate the discovery of genes and markers minimizing a score function that assigns penalties of different
important in cancer, as well as the discovery of loci important in type for each kind of deviation from genomic normality (break-
inherited genetic disease. points, unexplainable probe values, noise, etc.); we discuss how

these penalties are derived. We describe various algorithmic
array-based comparative genomic hybridization I copy-number alternatives, their implementations, and the empirical results
fluctuations I maximum a posteriori estimator derived using real data (where the underlying facts are not

directly verifiable) and simulated data (where the true facts are
enomes in a population are polymorphic, giving rise to known).
diversity and variation. In cancer, even somatic cell genomes Statistical Model

can rearrange themselves, often resulting in genomic deletion(hemi-or homozygous)and amplifications. Means for assWe start by describing a probabilistic generative model forthese rchromozygomal andberr lifications .quck iexensi assessing observed copy number data. The model is Bayesian in spirit, in
these chromosomal aberrations quclinexpensively, and ac-quicky, . that we use parameterized prior distributions and use thecurately have many potential scientific, clinical, and therapeutic
implications (1, 2), particularly in the genomics of cancer and posterior distribution function to estimate the underlying model.
inherited diseases. Genome-based methods for studying cancer, We use a maximum aposteriori (MAP) technique to estimate the
in contrast to the gene expression-based methods, can exploit the underlying model. This idealized statistical model takes into
stability of DNA (as a component of the cancerous cell, which account some major sources of copy number variation in an
does not vary as a function of the cell's physiological state). irregular genome and is described by two scalar parameters 0 -
Karyotyping, determination of ploidy, and comparative genomic P,,e au t 1i
hybridization have been useful tools for this purpose even though We assume that there is a copy-number distribution for probestheyarecrue ad podue dta tat ustbe rocsse by at locations that have not been affected by the chromosomal
sophisticatthey are crude and produce data that must be processed by aberrations associated with cancer. We call these probes regular

nsophisticated statistical probes. We also assume that the probability for a particular
Mirordiagnosis and treatment. probe being regular is p, and that the associated regular copy-
S Microarray methods are an important new technology that can number distribution, after log transformation, is Gaussian, with

be used to study variations between regular and cancer genomes. mean 1L, and standard deviation ar. For the other probes, which
Imagine that one can sample the genome uniformly (indepen- we call deviated, the log-transformed copy-number distributions
dently and identically distributed) and reproducibly to create a also are assumed to be Gaussian, with unknown mean and
large number of oligonucleotides (on the order of 100,000 standard deviation, distinct from the regular distribution. There
probes) located every 30 kb or so. These oligonucleotides almost
always come from regions of the genome that do not share
homologous sequences elsewhere in the genome. These se- Abbreviations: MAP, maximum a posteriori; ROMA, representational oligonucleotide
quences (typically less than a few hundred base pairs long) microarray analysis; CGH, comparative genomic hybridization; arrayCGH, array-based CGH;
occupy unique positions in the normal genome and have exactly HMM, hidden Markov model.

two copies. 5
R.-S.D. and A.R. contributed equally to this work.

If one such oligonucleotide belongs to a region in a cancer IlTo whom correspondence should be addressed. E-mail: mishra@nyu.edu.
genome that has an altered copy number, say, c (0 - c =A 2), then © 2004 by The National Academy of Sciences of the USA
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are usually many sets of probes drawn from different deviated
distributions. Pr(xI IN) = f- 4,(xi, Ap, (.2) [2]

We also assume that there are locations in the genome that are
particularly susceptible to amplification (also known as dupli-
cation) and deletion events. These aberrations change the copy where the ith probe is covered by the jth interval of the interval
numbers of probes locally. We model the number of such structure IN and ttj is the mean of the corresponding Gaussian
mutations as a Poisson process with parameter ptjN, where N is distribution. 40 denotes the density function of the Gaussian
the length of the genome (i.e., total number of probes). distribution. By multiplication, we obtain the posterior likeli-

We subdivide the probes along the genome into k nonover- hood function:
lapping intervals. Probes belonging to a particular interval are k

aW assumed to have a similar evolutionary history of duplication and L(i7x) = e-pbN (P'N) #regular

deletion events, and therefore have similar copy-number distri- k
butions. The number of intervals into which the probes can be
separated represents the progressive degeneration of a cancer n

cell line. We do not model single nucleotide polymorphisms and .(1 - pr)#deviated.H 4O(Xi, Lj, ('
2
). [3]

other point-mutation events, and this undermodeling reappears i=1
as localized noise in our analyzed data.

In our picture, each interval in this subdivision has a "true" In the above expression for L, only the A values of nonregular

copy number. Our goal is to estimate the correct subdivision and processes are unknown, and we estimate these values by using the

the copy numbers associated with each subinterval. Despite its sample mean for the interval. The MAP solution to the seg-

simplicity, our model can serve as the basis of a statistical mentation problem is obtained by finding the interval structure

algorithm to infer the aberrations without overfitting the data. 1* that maximizes this likelihood function or, equivalently,
More formally, given a set of N probe copy-number values minimizes the negative log likelihood of L.

arranged on the genome, we assume that there is an unknown Algorithm and Implementation
partition of this set into nonoverlapping subintervals. The probe A dynamic programming algorithm efficiently minimizes the
copy number values in the jth interval are assumed to arise as negative posterior log likelihood function obtained above. Start-
independent samples from a Gaussian distribution w(ttj, oj). ing with an interval structure I = (i1, tk, .... , ik, ttk), we can
The parameters relating to thejth interval can be represented as extend it to the interval structure I' = (iA, p4..... ik+i, Ak+±P,

the tuple Ij = (1.j, ij, aj), where Aj and •y are the mean and where ik+l > ik. The following formula computes the log
standard deviation of the appropriate Gaussian distribution and likelihood for such an extension
ij is the position of the last probe in the interval. We call such a
set of intervals I = {/jU = 1 ....., k} an interval structure. When 1 lk+1

a particular interval in I is regular, its mean is the regular mean -log L(I') = -log L(I) + 1 (x2 -

ttr. If an interval !j is deviated, then its population mean tLj is J=ik+l

unknown and is estimated by using the sample mean over the - log(pbN) + log(k + 1)
interval. In this work, we assume that all of the oy terms are equal
to some common value o, and we therefore omit them from the ik+1 - 1k

notation. We denote an interval structure INwith k intervals and + k log(27ra 2) - (ik+- - ik)
whose intervals have associated means pi,. .. , P)k and endpoints
ii, . .. , ik (necessarily ik = N) as (il, Al, i 2, AL2, .... ik, IAk). " k Ed, logP, + ý k dviated 109(1 -P,)]

Our goal is to estimate the unknown interval structure IN from
an input sequence {vi, i = 1... NJ of copy numbers of N [4]
successive probes. where the last term on the right side is chosen according to

The statistical model described thus far fits naturally into a whether the last added interval (i.e., the one extending from !
Bayesian setting. We can start with a prior distribution on the set ik + 1 to ik+1) is regular or not. H = 1 if the Boolean formula e
of interval structures depending only on the number of intervals is true, and 0 otherwise. We also point out that the MAP
and the number of regular probes with two scalar parametersp,, approach permits the estimation of the 1L terms in a uniform
and Pb whose significance is described above. manner. When the last added interval is regular, the value tkk+1

This prior has two components, the first a Poisson distribution is fixed at the global mean IL. When the last added interval is
to model the number of intervals with Poisson parameter pbN. deviated, however, the MAP criterion automatically forces the
The second component is a sequence of Bernoulli trials, one for choice of the sample mean of the data points covered by the last

<5 each probe with probability pr that a given probe is regular. interval as the value for -"k+i. One could build hierarchical
Combining these factors, the prior distribution becomes models for the mean and use these "shrinkage-like" estimators

_() (pbN) [ as well (3), although we do not explore that approach here.

PON) = e -pb o#regular( - )#deviated [1] The negative log likelihood function satisfies an optimality
k !condition that allows one to use a standard dynamic program-

where #regular is the number of regular probes with the "reg- ming algorithm [of time-complexity O(N 2)] in this setting.

ular" copy-number distribution and #deviated is the number of Results
remaining probes in the interval structure IN. In each interval I/, We evaluate the performance of this simple Bayesian scheme on
the data points are modeled by adding independent Gaussian three kinds of data. For each of these data sets, we will see that
noise to this prior structure and are drawn from the Gaussian proper choice of the parameter values Pr and Pb leads to good
distribution 'N(Aji, a-). segmentation. Indeed, coefficients chosen from within a fairly

The data likelihood function for the first n probes is given by large region of the "p,-pb space" lead to a good segmentation
the product of Gaussians: because our procedure is stable over a large domain. The

Daruwala etal. PNAS I November 16, 2004 I vol. 101 I no. 46 1 16293
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Fig. 1. Segmented probes on chromosome 2, Pr = 0.55, Pb = 0.005, samplingrate1 in10.Fig. 2. Segmented probes on chromosome 8, Pr =0.55, Pb =0.01, sampling
rate 1 in 10.

rate 1 in 10.

parameters Pb, Pr, g, and o, play different roles: an increase inpb defects and mental retardation (see ref. 6 for review and
yields more intervals in the segmentation, and, asp, is increased, defecation of rs 6 hor been and
more probes come to be classified as regular, and therefore the applications of this technique). Tumors that have been studied
number of different segments diminish, by using this method are breast, head and neck, Wilms, esoph-

The choice of g is critical because it controls the bias in the ageal, pulmonary artery intimal, adrenocortical, renal, and

resulting segmentation. The choice of or is also important prostate cancers and lymphomas. We have tested our algorithm
because increasing ar weakens the influence of the data on the on a data set obtained by high-resolution arrayCGH analysis of
segmentation obtained, prostate cancer tissue. The data were supplied by a group at

Nijmegen University Medical Center and obtained by hybrid-
Representational Oligonucleotide Microarray Analysis (ROMA) Data ization on their custom array composed of -3,500 fluorescence
from Breast Cancer Cell Lines. ROMA is a comparative genomic in situ hybridization-verified clones selected to cover the genome
hybridization (CGH) technique developed by Wigler and col- with an average of one clone per megabase (7).
leagues (1) at Cold Spring Harbor Laboratory. It evolved from Fig. 3 shows the performance of our segmentation algorithm
an earlier method, representational differential analysis, which on data from prostate cancer cell lines obtained through array-
was adapted for greatly increased volumes of data obtained by CGH experiments. We note that these data are noisier than the
using an oligonucleotide microarray. ROMA uses a comparative ROMA data considered previously. But, despite the increased
"two-color" scheme to compare multiple genomes, each repre- noise, the segmentation algorithm is robust and yields reason-
sented with reduced complexity by using a PCR-based method' able segmentations.
(4, 5). As in other array-based methods, ROMA performs
simultaneous array hybridization to compare a normal genome
at one fluorescent wavelength and a tumor genome at another. 4

•" The DNA representations used by ROMA are based on ampli-
fication of short restriction endonuclease fragments and hence
are predictable from the nucleotide sequence of the genome. We
have tested our algorithm on the data sets from the Wigler
laboratory obtained by ROMA from the genomes of breast
cancer cell lines. The data set is based on 85,000 well charac- * *

terized probes, each of length 70 bp, providing a resolution of a 7 ,,o, ,' -• - *-. , -

probe every 15-30 kb. 0

Figs. 1 and 2 show subsampled ROMA breast cancer data M,
from chromosomes 2 and 8, respectively, overlaid with the --

"segmentation found by our algorithm. The low-complexity DNA
representation used in ROMA, together with a careful choice of
probes, provides low-noise data that can be characterized accu-
rately by the algorithm.

Array-Based CGH (arrayCGH) Data from Prostate Cancer Cell Lines.
arrayCGH is a recently developed technique that maps dupli-
cated or deleted chromosomal segments onto high-density arrays 0 50 100 150 200
of well characterized bacterial artificial chromosomes (BACs), probes
rather than onto metaphase chromosomes. This method has
been used for precise mapping of duplications and deletions Fig. 3. Segmented probes on array-based CGH data. Chromosome 8, p, =

occurring in cancers and other human diseases, including birth 0.55, Pb = 0.01, sampling rate 1 in 10.

16294 I www.pnas.org/cgi/doi/10.1073/pnas.0407247101 Daruwala etal.
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Fig. 5. Average number of misclassified probes plotted against increasing o,
on synthetic data. The average number of misclassified probes in >100 trials
is normalized against the length of the simulated genome.

Berger and Bernardo (10) and Kass and Wasserman (11)], and
conjugate priors [Raiffa and Schlaifer (12)] among others.
Conjugate prior methods frequently arise in connection with
exponential families of distributions [see Brown (13)]. Other

i--'-r -r- - - approaches include using invariance properties to posit prior
0 200 400 600 800 1wo distributions with good performance. More recent and some-

probes what more data-dependent techniques include hierarchical and
empirical Bayes techniques. Textbooks such as those by Ber-

Fig.4. Asimulatedgenomewith[L=0.0ando-=0.15andthecorresponding nardo and Smith (14), Berger (15), Carlin and Louis (16),
segmentation. Gelman et al. (17), and Robert (18) cover model selection as a

part of Bayesian learning.
For the problem of estimating probe copy numbers, the prior

Simulated Data. To further test our algorithm, we can use an distribution is specified by the two probability parameters, Pr
artificial but biologically inspired model to generate synthetic andpb. The other parameters (pt, the regular mean, and o-2, thedata. To generate simulated copy-number data, we choose loci a

uniformly over a genome such that the probability of a dupli- lem of prior selection reduces to the problem of optimally

cation or deletion event taking place at that location on the selecting the values of p, and pb to prevent overfitting of the
genome is given bypb. At each of these points, we assign a new data.
copy-number value that represents the mean for the new inter- Minimax approaches choose prior distributions that mini-
val. The mean values are drawn from a power-transformed -Y mize the maximum value of the likelihood function (Eq. 4).
distribution to mimic the observed distribution of means in Tis terionis p e in tha itechoos tior that

experimental data. The lengths of the intervals follow a geo- This criterion is pessimistic, in that it chooses the prior thatgenerates the worst likelihood value. See, for example, Berger •i
metric distribution such that the ratio of expected fragment geeae teo rs likelihood val.e, for e , Bre n
length and the expected distance between the beginning of each non-iengtervalirn c the segmeneddistatince aend the meaing vlesare parametric setting of function estimation, multiscale methodsinterval is p,. Once the segmentation and the mean values are•! ..

chosen, we generate the simulated data by adding random have been proven to be asymptotically minimax by Donoho
Gaussian noise. A typical simulated genome is shown in Fig. 4. and Johnstone (25-27).

We adapt an approach, based on statistical decision theory,
Effect of Noise on Performance. We investigate the effect of that directly controls the level of overfitting without explicitly
increasing the or of the underlying model on the performance of depending on the asymptotic performance guarantees of mini-
the segmenter. Assuming the parameters of the model are max approaches. We rely on the fact that, in any segmentation,
correctly estimated, the segmenter can output the estimated each jump separates the probes in the two adjoining intervals. If
mean value at every probe position. Using the known mean a segmentation is overfitted, at least one of its jumps must be
values, we can compare these two sequences of means. In our overfitted, too. We use Hotelling's t2 statistic [see Anderson (28)
setting, a good measure of error is the number of misclassified or Wilks (29)] at each jump to compute a measure of this
probes, i.e., the number of probes that are known to be regular overfitting.
but were classified as amplified or deleted and vice versa. Fig. 5 We apply an F test to Hotelling's t2 statistic to test whether two
shows the increase in the rate of misclassification as o- increases, sets of independent samples come from populations with the

same mean. This F test is possible because we assume that the
Prior Selection two sets of samples have the same (but still unknown) variance.
Proper selection of a prior distribution has received extensive Let x1, x2, . . ., XN1 and y1, Y2, . . ., YN, be the two sets of
attention in the literature. Approaches include noninformative independent samples taken from successive intervals of size NI
priors [Jeffreys (8)], reference priors [Bernardo (9); see also and N2, respectively. Then, we define the statistic:

Daruwala etal. PNAS I November'16, 2004 I vol. 101 I no.46 1 16295



SN 2 ýa the group perform poorly on normal-normal data due to overly
2 (N, + N 2 ) pessimistic criteria. In some sense, our approach of putting a

1 2[5] Bayesian prior on the number of change points enables us to be
f 1 + (x(x - -)2 ±_ (yj - Y)2) aggressive about detecting change points.

dfl +df2 (7We have devised a versatile MAP estimator algorithm to
analyze arrayCGH data. This algorithm uses a model thatwhere ; and 9 are the respective sample means, and dfr and df2  captures the genomic amplification-deletion processes but is

Srefer to the respective degrees of freedom of the two samples. relatively insensitive to additive noise in the data. When the
Under the null hypothesis (of equal means), t

2 follows an F algorithm was tested on a wide variety of data from ROMA- and
distribution with 1, (dfi + df2) degrees of freedom. This leads to arrayCGH-based methods, this particular feature of the algo-
a one-tailed F test. rithm provided strength and robustness. We note that the correct

Intuitively, t2 needs to be large to avoid overfitting. The cumu- choice Ofpr andPb is critical in the segmentation algorithm. High
lative probability for the appropriate F distribution yields a score values of Pb tend to yield overfitted solutions, whereas high
that determines the quality of the break. We also compute a score values of Pr drive us toward biased solutions that mark all
for the goodness of fit for the whole segmentation. This procedure segments as regular. The advantage of having an algorithm with
yields a set of scores: one for each break and one for the goodness only two numerical parameters is that a simple and natural
of fit. The minimum of these scores is used to evaluate the whole statistical criterion enables the proper choice of these parame-
segmentation. We select the parametersp, and Pb to maximize this ters in all cases.
score by searching at regular intervals over the parameter space. We We parenthetically note that our approach extends to multi-
can continue to refine the search in the neighborhood of the optimal dimensional data mutatis mutandis. The relevant likelihood
values obtained. However, the algorithm is already extremely stable function needs to be changed to the following
in a large region of thepr-pb space and yields, in practice, very good
segmentations. L(ýil, Al, i2, I.2 . i,, Ak))

Discussion e-pbN (PN 1

The problem of detecting copy-number variations has assumed k! (21rll)"'2

biological importance in recent years. Most extant algorithms
use a global thresholding approach for this problem. This is the
case, for example, in Vissers et al. (7) as well as many "-(1- pr)#deviated [6]
commercially available packages. These algorithms have the
advantage of simplicity but perform poorly in the presence of The t
noise and correlations. Other published approaches have used 2 statistic can be modified similarly.
smoothing (30), hidden Markov models (HMMs) (31, 32), and Prior work by Donoho and colleagues (36-38) on detecting
mixtures of Gaussians, as well as approaches that try to geometrical features in point clouds by using multiresolution
estimate the correlations between probes (33, 34). Although methods relates to the ideas presented here. These papers
smoothing certainly improves the performance of threshold- focus on the use of multiresolution approaches for efficiency
based approaches, the specifics remain somewhat ad hoc, and and statistical stability. There is also prior work by Kolaczyk
the method requires tuning dependent on the source and (see ref. 39, for example) that gives a unified Bayesian
resolution of the data. treatment to multiresolution analysis and covers large classes

HMMs have the advantage of having a general (although slow) of both continuous as well as discrete processes. Our approach
learning algorithm; however, their performance is very sensitive to leads to an efficient algorithm for sequence-like data, whichtheartopalogyofthe; Hoeve or, theis p oreaone rsvearcsersitven to can be used in a multiscale setting if desired. Furthermore, inthe top ology of the H M M . F or this reason, res earchers tend to o u ap r ch t e p ob il s c g n r t ve m d l i e t y l a s
analyze very narrow classes of data with a particular HMM, e.g., a our approach, the probabilistic generative model directly leads
prostate cancer cell line. Very rarely are normal-normal data so to the cost function; thus, other generative models, e.g.,
analyzed, because this analysis usually necessitates the construction poisson models, can be easily considered in this setting. It
of an HMM with a different topology, leading to questions about should be noted that the Hotelling's t

2 statistic cannot be easily
the comparative power of such analyses. The main problem with generalized to this setting.
both this approach and others based on assuming a distributional We thank Yi Zhou (New York University Bioinformatics Group) and
form for cancerous data is that the cancerous insertion-deletion two anonymous reviewers for many helpful discussions, suggestions, and
polymorphisms are characterized by being nonnormal, rather than relevant references to statistical literature. We also thank Lakshmi
belonging to a specific distributional form. Therefore, fitting cancer Muthuswami (Cold Spring Harbor Laboratory), and Eric Schoenmakers
data leads to the construction of a specific HMM topology that and Joris Veltman (Nijmegen University Medical Center, Nijmegen, The
might depend on the specific cancer as well as the goodness of fit Netherlands) for providing the data used here and for explaining their
desired by the statistician, biological significance. The work reported in this paper was supported

Olshen and Venkatraman (35) have advocated another ap- by grants from the National Science Foundation (NSF) Oubic Program,proach based on recursive change-point detection in the copy the NSF Information Technology Research Program, the Defensepa Advanced Research Projects Agency, a Howard Hughes Medical Insti-
number data. The existence of a large literature on change-point tute Biomedical Support Research Grant, the U.S. Department of
analysis makes this approach attractive. Conversely, an efficient Energy, the U.S. Air Force (Air Force Research Laboratory), the
implementation of this algorithm is difficult. The specific sta- National Institutes of Health, and the New York State Office of Science,
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